Deteksi Intensi Pergerakan Jari Menggunakan Metode Power Spectral Density dengan Stimulus Visual

  • Reza Darmakusuma Institut Teknologi Bandung
  • Ary S. Prihatmanto Institut Teknologi Bandung
  • Adi Indrayanto Institut Teknologi Bandung
  • Tati L. Mengko Institut Teknologi Bandung
Keywords: EEG, PSD, Common Average Reference, SVM

Abstract

This research explores a detection of finger’s movement using Burg’s Power Spectral Density (PSD) as features vector. EEG signal is recorded using sampling frequency of 1000 Hz. Analysis of the signal is conducted by dividing signal into three segments; 1000 ms, 500 ms and 250 ms. Common Average Reference (CAR) and Support Vector Machine (SVM) are used in features extraction and pattern recognition. The result shows that the system can classify the finger’s movement with accuracy of about ±65,37% in 1000 ms of signal length.

References

Dennis J. McFarland, Laurie A. Miner, Theresa M. Vaughan, and Jonathan R. Wolpaw, "Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements", Brain Topography, Volume 12. Number 3, 2000.

Tatum, W., et. al. “Handbook of EEG Interpretation”, Demos Medical Publishing, USA, 2008.

Sanei, S.and Chambers, A., “EEG Signal Processing”, John Willey & Sons, Ltd, United Kingdom, 2007.

Juergen Mellinger, “User Tutorial:Mu Rhythm BCI Tutorial”, 2007. [Online]. Available: http://www.bci2000.org/wiki/.

Wolpow, J.R. , et al. Brain-computer interfaces for communication andcontrol. Clinical Neurophysiology 113 (2002 ) 767-791. Elsevier. 2002.

Garcia, Gary. Direct Brain-Computer Communication Trough Scalp Recorded EEG Signal. Lausanne, EPFL. 2004.

(2014) BCI2000 website. [Online].Available: http://www.schalklab.org/research/bci2000.

Ludwig, K.A. et. al Using a Common Average Reference to Improve Cortical Neural Recording From Microelectrode Arrays. Journal of Neurophysiology, 101(3):1679-1689. 2009.

Darmakusuma R., et. al., “Revisit: Pattern Recognition of Mu-Rhythm Using Autoregressive and Linier Classifier”, ICSET2014, Bandung. 2014.

(2014) Swartz Center for Computational Neuroscience website [Online]. Available: http://sccn.ucsd.edu.

Ahmadi, A., et.al., "Light-weight Single Trial EEG Signal Processing Algorithms: Computational Profiling for Low Power Design", International Conference of the IEEE Engineering in Medicine and Biology Society, 2011:4426-30. 2011.

Carlos A. Pardo, M.D., Brain, Spinal Cord and Cells: A Neuro-primer for Non-neurologists, Transverse Myelitis Association Journal Volume 1, Article 8. Johns Hopkins Transverse Myelitis Center; Johns Hopkins University School of Medicine. 2006.

Melissa Conrad Stöppler, MD., “Paralysis”, 2012. [Online] Available:http://www.medicinenet.com/paralysis/symptoms.htm.

Malmivuo, J. and Plonsey, R., Bioeletromagnetism: Prinsipes and Application of Bioelectric and Biomagnetic Fields. Oxford University Press. 1995.

Selim R Benbadis, MD, et. al., “Normal Awake EEG”, 2013. [Online] Available: http://emedicine.medscape.com/article/1140143-overview.

Pires. G, Nunes. U,and Castelo-Branco M., “Single-Trial EEG Classification of Movement Related Potential”, IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands. 2007.

Delorme, A., Rousselet, G., Mace, M., Fabre-Thorpe M. Interaction of Bottom-up and Top-down processing in the fast visual analysis of natural scenes. Cognitive Brain Research, 103-113.

(2015), Mathworks website [Online], Available: http://www.mathworks.com/

How to Cite
Reza Darmakusuma, Ary S. Prihatmanto, Adi Indrayanto, & Tati L. Mengko. (1). Deteksi Intensi Pergerakan Jari Menggunakan Metode Power Spectral Density dengan Stimulus Visual. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 4(2), 125-129. Retrieved from https://dev.journal.ugm.ac.id/v3/JNTETI/article/view/3013
Section
Articles