Implementasi Maximum Power Point Tracking pada Photovoltaic Berbasis P&O-Fuzzy

  • Machmud Effendy Universitas Muhammadiyah Malang
  • Nur Alif Mardiyah Universitas Muhammadiyah Malang
  • Khusnul Hidayat Universitas Muhammadiyah Malang
Keywords: MPPT, Sel surya, P&O, P&O-Fuzzy

Abstract

Maximum Power Point Tracking (MPPT) technology is an alternative solution to improve efficiency of solar cells (photovoltaic). The main part of MPPT technology is DC-DC converter circuit and control algorithm. This paper proposes a control algorithm Perturbation and Observe (P&O)-Fuzzy on MPPT, which can improve the efficiency of solar cells, and simultaneously comparing the control algorithms P&O and P&O-Fuzzy. Synchronous buck converter is used to reduce the voltage of solar cells. The buck converter is controlled using P&O and P&O-Fuzzy algorithms. These algorithms use two inputs; change of power and change of voltage, produced by the solar cell. MPPT technology has been tested using solar cells with a capacity of 50 Watt as a source of electrical energy, battery 12V/45aH as energy storage, and resistor as load. The test results indicate that the P&O algorithm has an efficiency of 86% with rise time (tr) and steady state time (ts) at 0.45 seconds, while the P&O-Fuzzy algorithm has an efficiency of 89% with rise time (tr) and steady state time (ts) at 0.3 seconds.

References

Ditjen-Listrik ESDM, “Kebijakan Pengembangan Energi Terbarukan dan Konservasi Energi”, ESDM, 2006.

Surojo dkk, “Desain dan Simulasi MPPT Sel Surya Menggunakan Fuzzy Logic Control Untuk Kontrol Boost Converter”, 7th Basic Science National Seminar Proceeding, 2010.

B. N. Alajmi, K. H. Ahmed, S. J. Finney, B. W. Williams, “Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System”, IEEE Trans. Power Electron, 26, 1022–1030, 2011.

Helmy Mukti, Onny, Hadi, “Pemodelan Fuzzy Logic Control Untuk Pengendali PWM Pada Buck Converter”, JNTETI, Vol. 5, No. 1 Februari 2016.

Jose Formenti, Robert Martinez, “Design Trade-offs for Switch-Mode Battery Chargers”, Texas Instruments Incorporated, 2004.

El-Ashry,M. “Renewables 2010 Global Status Report”, (Paris: REN21 Secretariat), Copyright Deutsche (GTZ) GmbH. 2010

Villalva,M. Gazoli,J. and Ruppert ,E. “Modeling and Circuit-Based Simulation of Photovoltaic arrays”, IEEE transactions on power electronics, VOL. 24 NO 5. May 2009

K.I. Hwu, Y.T. Yau, “KY converter and its derivative,” IEEE Transaction on Power Electronics, 24, pp.128-137, 2009.

F.L. Luo, H. Ye, “Positive Output Super-Lift Converters,” IEEE Transaction on Power Electronics, 18, pp. 105-113, 2003.

R. Giral, E. Arango, J. Calvente and L. Martinez-Salamero, "Inherent DCM Operation of the Asymmetrical Interleaved Dual Buck-Boost," Proceeding IEEE IECON'02, 1, pp. 129-134, 2002.

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitellio, “Optimization of Perturb and Observe Maximum Power Point Tracking Method”, IEEE Trans. Power Electron,20, 963–973, 2005.

A. Chaouachi, R.M. Kamel, K. Nagasaka, “A Novel Multi-Model Neuro-Fuzzy-Based MPPT for three phase grid-connected photovoltaic system”, Science Direct - Solar Energy, 84, pp. 2219-2229, 2010.

S. Jaw-Kuen, W. Yu-Chen, and C. Bo-Chih, “A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables,” ISSN 1999-4893. Algorithms, 8, 100-127. 2015.

How to Cite
Machmud Effendy, Nur Alif Mardiyah, & Khusnul Hidayat. (1). Implementasi Maximum Power Point Tracking pada Photovoltaic Berbasis P&O-Fuzzy. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 6(1), 115-120. Retrieved from https://dev.journal.ugm.ac.id/v3/JNTETI/article/view/2897
Section
Articles