Optimasi Support Vector Machine untuk Memprediksi Adanya Mutasi pada DNA Hepatitis C Virus

  • Berlian Al Kindhi Institut Teknologi Sepuluh Nopember
  • Tri Arief Sardjono Institut Teknologi Sepuluh Nopember
  • Mauridhi Hery Purnomo Institut Teknologi Sepuluh Nopember
Keywords: SVM, Mesin Pembelajaran, sequence DNA, Semantic Similarity

Abstract

Hepatitis C Virus (HCV) is a virus which capable of infecting RNA that can lead to changes in the DNA sequence. This change of DNA arrangement is called genetic mutation. Every mutation occurs in HCV, it will be called a new subtype. Over time, HCV subtypes increase, and will continue to grow as the HCV mutation cycle progresses faster. Therefore, a way to find a mutation in millions of sequences in the gene bank is needed. This study tested six types of Support Vector Machine (SVM) methods to determine the best SVM kernel performance in the application of HCV DNA sequence detection in isolatedDNA. The tested SVM kernel was linear, quadratic, cubic, fine Gaussian, median Gaussian, and coarse Gaussian. The data set is 1000 isolated DNA consisting of 500 isolated Homo Sapiens and 500 isolated HCV. Firstly, the data set will go through the pattern search process using the Edit Levenshtein Distance method, then the result of the processing will be the variable x in SVM. The target or variable y on SVM is the positive or negative value of the isolated against HCV. The results show that among the six types of SVM methods being tested, the method of fine Gaussian SVM has the lowest performance of 77.4%. The SVM method is tested by performing optimizations on the determination of the hyperplane. The test results proved that the SVM method is able to analyze the presence of HCV mutations in isolated DNA with an accuracy of 99.8%.

References

Jun Hu, Yang Li, Ming Zhang, Xibei Yang, Hong-Bin Shen, dan Dong-Jun Yu, ”Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 14, No. 6, hal. 1389-1398, 2017.

Bin Liu, Shanyi Wang, Qiwen Dong, Shumin Li, Xuan Liu, ”Identification of DNA-Binding Proteins by Combining Auto-Cross Covariance Transformation and Ensemble Learning,” IEEE Transactions on NanoBioscience, Vol. 15, No. 4, hal. 328-334, 2016.

Jianmin Ma, Minh N. Nguyen, dan Jagath C. Rajapakse, ”Gene Classification Using COdon USage and Support Vector Machine,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 6, No. 1, hal. 134-143, 2009.

Lakshmi Chaitanya, Krystal Breslin, Sofia Zuñiga, Laura Wirken, Ewelina Pośpiech, Magdalena Kukla-Bartoszek, Titia Sijen, Peter de Knijff, Fan Liu, Wojciech Branicki, Manfred Kayser, Susan Walsh, ”The HIrisPlex-S System for Eye, Hair and Skin Colour Prediction from DNA: Introduction and Forensic Developmental Validation,” Forensic Science International: Genetics, Vol. 35, hal. 123-135, 2018.

Javier R. Revollo, Azra Dad, Lea P. McDaniel, Mason G. Pearce, Vasily N. Dobrovolsky, ”Genome-Wide Mutation Detection by Interclonal Genetic Variation,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 829-830, hal. 61-69, 2018.

Luis Alberto dan Hernandez Montiel, ”Hybrid Algorithm Applied on Gene Selection and Classification from Different Siseases,” IEEE Latin America Transactions, Vol. 14, No. 2, hal. 930-935, 2016.

Berlian Al Kindhi, Tri Arief Sardjono, ”Pattern Matching Performance Comparisons as Big Data Analysis Recommendation for Hepatitis C Virus (HCV) Sequence DNA,” 2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), Kinabalu, 2015, hal. 99-104.

Berlian Al Kindhi, Muhammad Afif Hendrawan, Diana Purwitasari, Tri Arief Sardjono, Mauridhi Hery Purnomo, ”Distance-Based Pattern Matching of DNA Sequences for Evaluating Primary Mutation,” 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, 2017, hal. 310-314.

Annisa Handayani, Ade Jamal, Ali Akbar Septiandri, ”Evaluasi Tiga Jenis Algoritme Berbasis Pembelajaran Mesin untuk Klasifikasi Jenis Tumor Payudara,” JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi), Vol. 6, No. 4, hal. 394-403, 2017.

Maria Pujantell, Sandra Franco, Iván Galván-Femení, Roger Badia, Marc Castellví, Edurne Garcia-Vidal, Bonaventura Cloteta, Rafael d Cid, Cristina Tural, Miguel A.Martínez, Eva Riveira-Muñoz, José A.Esté, Ester Ballana, ”ADAR1 Affects HCV Infection by Modulating Innate Immune Response,” Antiviral Research, Vol. 156, hal. 116-127, 2018.

Annettevon Delft, Timothy A.Donnison, José Lourenço, Claire Hutchings, Caitlin E.Mullarkey, Anthony Brown, Oliver G.Pybus, Paul Klenerman, Senthil Chinnakannan, Eleanor Barnes, ”The Generation of a Simian Adenoviral Vectored HCV Vaccine Encoding Genetically Conserved Gene Segments to Target Multiple HCV Genotypes,” Vaccine, Vol. 36, No. 2, hal. 313-321, 2018.

Sebastián Maldonado, Julio López, ”Dealing with High-Dimensional Class-Imbalanced Datasets: Embedded Feature Selection for SVM Classification,” Applied Soft Computing, Vol. 67, hal. 94-105, 2018.

David de la Mata-Moya, María Pilar Jarabo-Amores, Jaime Martín de Nicolás, Manuel Rosa-Zurera, ”Approximating the Neyman–Pearson Detector with 2C-SVMs. Application to Radar Detection,” Signal Processing, Vol. 131, hal. 364-375, 2017.

Deepak Kumar Jain, Surendra Bilouhan Dubey, Rishin Kumar Choubey, Amit Sinhal, Siddharth Kumar Arjari, Amar Jain, Haoxiang Wang, ”An Approach for Hyperspectral Image Classification by Optimizing SVM Using Self Organizing Map,” Journal of Computational Science, Vol. 25, hal. 252-259, 2018.

Rupan Panja, Nikhil R. Pal, ”MS-SVM: Minimally Spanned Support Vector Machine,” Applied Soft Computing, Vol. 64, hal. 356-365, 2018.

Saurabh Paul, Malik Magdon-Ismail, Petros Drineas, ”Feature Selection for Linear SVM with Provable Guarantees,” Pattern Recognition, Vol. 60, hal. 205-214, 2016.

M. A. Ebrahimi, M. H. Khoshtaghaza, S. Minaei, B. Jamshidi, ”Vision-based Pest Detection Based on SVM Classification Method,” Computers and Electronics in Agriculture, Vol. 137, hal. 52-58, 2017.

Samia Djemai, Belkacem Brahmi, Mohand Ouamer Bibi, ”A Primal–dual Method for SVM Training,” Neurocomputing, Vol. 211, hal. 34-40, 2016.

Yong Liu, Shizhong Liao, ”Granularity Selection for Cross-Validation of SVM,” Information Sciences, Vol. 378, hal. 475-483, 2017.

Sidheswar Routray, Arun Kumar Ray, Chandrabhanu Mishra, G. Palai, ”Efficient Hybrid Image Denoising Scheme Based on SVM Classification,” Optik, Vol. 157, hal. 503-511, 2018.

Jing Zhou, Ying Yang, Steven X. Ding, Yanyang Zi, Muheng Wei, ”A Fault Detection and Health Monitoring Scheme for Ship Propulsion Systems Using SVM Technique,” IEEE Access, Vol. 6, hal. 16207-16215, 2018.

Dan Zhang, Licheng Jiao, Xue Bai, Shuang Wang, Biao Hou, ”A Robust Semi-Supervised SVM Via Ensemble Learning,” Applied Soft Computing, Vol. 65, hal. 632-643, 2018.

Jian-wei Liu, Li-peng Cui, Xiong-lin Luo, ”MCR SVM Classifier with Group Sparsity,” Optik - International Journal for Light and Electron Optics, Vol. 127, No. 17, hal. 6915-6926, 2016.

C. Venkatesan, P. Karthigaikumar, Anand Paul, S. Satheeskumaran, R. Kumar, ”ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications,” IEEE Access, Vol. 6, hal. 9767-9773, 2018.

Luis H.S.Vogado, Rodrigo M.S. Veras, Flavio. H.D. Araujo, Romuere R.V. Silva, Kelson R.T. Aires, ”Leukemia Diagnosis in Blood Slides Using Transfer Learning in Cnns and SVM for Classification,” Engineering Applications of Artificial Intelligence, Vol. 72, hal. 415-422, 2018.

(2018) NCBI website. [Online], ”www.ncbi.nlh.gov”, tanggal akses: 27 Mei 2018.

I. Dagher, ”Quadratic Kernel-Free Non-Linear Support Vector Machine,” Journal of Global Optimization, Vol. 41, No. 1, hal. 15–30, 2008.

How to Cite
Berlian Al Kindhi, Tri Arief Sardjono, & Mauridhi Hery Purnomo. (1). Optimasi Support Vector Machine untuk Memprediksi Adanya Mutasi pada DNA Hepatitis C Virus. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 7(3), 317-323. Retrieved from https://dev.journal.ugm.ac.id/v3/JNTETI/article/view/2669
Section
Articles