Identifikasi Hubungan Sebab-Akibat pada Artikel Kesehatan menggunakan Anotasi Elemen Medis dan Paragraf
Abstract
This paper studies natural language processing on medical articles in Indonesian that aims to identify causal relationship and used as public health surveillance information monitoring system. This paper proposes selection-feature conformity, phrase annotation, paragraph annotation, and medical element annotation. System performance evaluation is carried out using intrinsic aprroach which compares supervised classification methods, i.e. naive bayes method and HMM. Results obtained for recall, precission, and f-measure are 0.905, 0.924, 0.910 and 0.706, 0.750, 0.720, respectively.
References
S. Akbar, L. Slaughter, dan Ø. Nytroø, “Collecting Health Related Text from Patient Health Writings,” The 2nd International Conference on Computer and Automation Engineering, 2010, Vol. 1, hal. 15–19.
X. Wu, X. Zhu, G.-Q. Wu, dan W. Ding, “Data Mining with Big Data,” IEEE Trans. Knowl. Data Eng., Vol. 26, No. 1, hal. 97–107, 2014.
A.J. Yepes, A. MacKinlay, B. Han, dan Q. Chen, “Identifying Diseases, Drugs, and Symptoms in Twitter,” Stud. Health Technol. Inform., Vol. 216, hal. 643–647, 2015.
A.J. Yepes, A. MacKinlay, dan B. Han, “Investigating Public Health Surveillance using Twitter,” Proc. 2015 Work. Biomed. Nat. Lang. Process. (BioNLP 2015), 2015, hal. 164–170.
K. Byrd, A. Mansurov, dan O. Baysal, “Mining Twitter Data for Influenza Detection and Surveillance,” Proc. Int. Work. Softw. Eng. Healthc. Syst. - SEHS ’16, 2016, hal. 43–49.
C.D. Corley, D.J. Cook, A.R. Mikler, dan K.P. Singh, “Text and Structural Data Mining of Influenza Mentions in Web and Social Media,” Int. J. Environ. Res. Public Health, Vol. 7, No. 2, hal. 596–615, 2010.
L. Wu, T.-S. Moh, dan N. Khuri, “Twitter Opinion Mining for Adverse Drug Reactions,” 2015 IEEE Int. Conf. Big Data (Big Data), 2015, hal. 1570–1574.
Y. Ji, H. Ying, P. Dews, A. Mansour, J. Tran, R.E. Miller, R.M. Massanari, “A Potential Causal Association Mining Algorithm For Screening Adverse Drug Reactions In Postmarketing Surveillance,” IEEE Trans. Inf. Technol. Biomed., Vol. 15, No. 3, hal. 428–437, 2011.
J. Atkinson dan A. Rivas, “Discovering Novel Causal Patterns from Biomedical Natural-Language Texts Using Bayesian Nets,” IEEE Trans. Inf. Technol. Biomed., Vol. 12, No. 6, hal. 714–722, 2008.
S.B. Bhaskoro, S. Akbar, dan S.H. Supangkat, “Identification of Causal Pattern using Opinion Analysis in Indonesian Medical Texts,” 2015 International Conference on Information Technology Systems and Innovation (ICITSI), 2015, hal. 1–7.
© Jurnal Nasional Teknik Elektro dan Teknologi Informasi, under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License.