Synthesis of 3-carbethoxy-4(3’-chloro-4’-hydroxy) phenyl-but-3-en-2-one and its cytotoxicity evaluation against cancer cell carrying mutant p53

  • Jeffry Julianus Department of Organic Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta
  • Mustofa Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
  • Jumina Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: Mutant p53, p53 pathway reactivation, 3-carbethoxy-4(3’-chloro-4’-hydroxy)phenyl-but-3-en-2-one, apoptosis, cell cycle arrest

Abstract

Overexpression of mutant p53 in cancer cell inactivates the p53 pathways to execute apoptosis and cell cycle arrest. This study aimed to synthesize new kardiena derivative compound, 3-carbethoxy-4(3’-chloro-4’-hydroxy)phenyl-but-3-en-2-one, to reactivate the p53 pathways to execute apoptosis and cell cycle arrest. Characterization of the synthetic compound employing melting point, IR, EI-MS, 1H-NMR, and 13C-NMR spectra revealed 3-carbethoxy-4(3’-chloro-4’-hydroxy)phenyl-but-3-en-2-one was successfully synthesized from 3-chloro-4-hydroxybenzaldehyde and ethyl acetoacetate using dimethylamine as a catalyst. This compound had antiproliferative activity against the WiDr cells which carried mutant p53. Its antiproliferative activity was better than 5’-FU as a reference standard to treat colon cancer. Increasing WiDr cell accumulation in the G2-M phase, the active form of caspase-3, and inducing apoptosis demonstrated the ability of 3-carbethoxy-4(3’-chloro-4’-hydroxy)phenyl-but-3-en-2-one to reactivate p53 pathways to execute apoptosis and cell cycle arrest in cancer cells carrying mutant p53.

References

Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G, et al. The TP53 website: an integrative resource center for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res 2013; 41:962-9.

https://doi.org/10.1093/nar/gks1033

Walerych D, Lisek K, Del Sal G. Mutant p53: One, no one, and one hundred thousand. Front Oncol 2015; 5(289):1-7.

https://doi.org/10.3389/fonc.2015.00289

Kotler EK, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, et al.A systematic p53 mutation library links differential function impact to cancer mutation pattern and evolutionary conservation. Mol Cell 2018; 71:178-90.

https://doi.org/10.1016/j.molcel.2018.08.013

Tal P, Eizenberger S, Cohen E, Goldfinger N, Pietrokovski S, Oren M, et al. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget 2016; 7(11):11817-37.

https://doi.org/10.18632/oncotarget.7857

Aschauer L, Muller PAJ. Novel targets and interaction partners of mutant p53 gain-of-function. Biochem Soc Trans 2016; 44:460-6.

https://doi.org/10.1042/BST20150261

Liu D-P, Song H, Xu Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 2010; 29(7):949-56.

https://doi.org/10.1038/onc.2009.376

Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 2013; 20:898-909.

https://doi.org/10.1038/cdd.2013.17

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502(7471):333-9.

https://doi.org/10.1038/nature12634

Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013; 15(1):2-8.

https://doi.org/10.1038/ncb2641

Schulz-Heddergott R, Moll UM. Gain of function (GOF) mutant p53 as actionable therapeutic target. Cancers 2018; 10(188):1-16.

https://doi.org/10.3390/cancers10060188

Walerych D, Napoli M, Collavin L, Sal GD. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012; 33(11):2007-17.

https://doi.org/10.1093/carcin/bgs232

Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol 2016; 6(12):1-7.

https://doi.org/10.3389/fonc.2016.00012

Vogiatzi F, Brandt DT, Schneikert J, Fuchs J, Grikscheit K, Wanzel M, et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. PNAS 2016; 12:E8433-42.

https://doi.org/10.1073/pnas.1612711114

Yue X, Zhao Y, Xu Y, Zheng M, Feng, Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol 2017; 429:1595-606.

https://doi.org/10.1016/j.jmb.2017.03.030

Schulz-Heddergott R, Moll UM. Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target. Cancers 2018; 10(188):1-16.

https://doi.org/10.3390/cancers10060188

Basu S, Gnanapradeepan K, Barnoud T, Kung C-P, Tavecchio M, Scott J, et al. Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes Dev 2018; 32:230-43.

https://doi.org/10.1101/gad.309062.117

Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi M-Y, Chapman CG, et al. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 2012; 33(2):442-51.

https://doi.org/10.1093/carcin/bgr270

Maslon MM, Hupp TR. Drug discovery and mutant p53. Trend. Cell Biol 2010; 20:542-55.

https://doi.org/10.1016/j.tcb.2010.06.005

Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol 2012; 30(29):3648-50.

https://doi.org/10.1200/JCO.2012.44.0412

Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17.

https://doi.org/10.1016/j.ccr.2014.01.021

Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: small molecule activators of p53. Pharmacol Ther 2017; 178:92-108.

https://doi.org/10.1016/j.pharmthera.2017.03.013

Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, Spencer J, et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res 2013; 41(12):6034-44.

https://doi.org/10.1093/nar/gkt305

Lambert JMR, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J, et al. PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell 2009; 15:376-88.

https://doi.org/10.1016/j.ccr.2009.03.003

Bykov VJN, Zhang Q, Zhang M, Ceder S, Abrahmsen L, Wiman KG. Targeting of mutant P53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol 2016; 6(21):17-23.

https://doi.org/10.3389/fonc.2016.00021

Bykov VJN, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 2005; 280(34):30384-91.

https://doi.org/10.1074/jbc.M501664200

Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 2018; 9:1-12.

https://doi.org/10.1038/s41419-018-0463-7

Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR, Sadler PJ, et al. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J Am Soc Mass Spectrom 2011; 22:888-97.

https://doi.org/10.1007/s13361-011-0088-x

Mantovani F, Walerych D, Del Sal G. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J 2017; 284:837-50.

https://doi.org/10.1111/febs.13948

Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin 2018; 37(30):1-13.

https://doi.org/10.1186/s13046-018-0705-7

Wassman CD, Baronio R, Demir Ö, Wallentine BD, Chen CK, Hall LV, et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Commun 2013; 4(1407):1-9.

https://doi.org/10.1038/ncomms2361

Punganuru SR, Madala HR, Venugopal SN, Samala R, Mikelis C, Srivenugopal KS. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur J Med Chem 2016; 107:233-44.

https://doi.org/10.1016/j.ejmech.2015.10.052

Li X-L, Zhou J, Chen Z-R, Chng W-J. p53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21 (1):84-93.

https://doi.org/10.3748/wjg.v21.i1.84

Meiyanto E, Septisetyani EP, Larasati YA, Kawaichi M. Curcumin analog pentagamavunon-1 (PGV-1) sensitizes widr cells to 5-fluorouracil through inhibition of NF-κB activation. Asian Pac J Cancer P 2018; 19:49-56.

Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3:330-8.

https://doi.org/10.1038/nrc1074

Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 2016; 85:375-404.

https://doi.org/10.1146/annurev-biochem-060815-014710

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3, and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 2013; 14(32):1-9.

https://doi.org/10.1186/1471-2121-14-32

Published
2021-02-08
Section
Articles