A Comparative Study on The Electrochemical Properties of Hydrothermal and Solid-State Methods in The NCM Synthesis for Lithium Ion Battery Application

  • Sylvia Ayu Pradanawati Department of Mechanical Engineering, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
  • Eduardus Budi Nursanto Department of Chemical Engineering, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
  • Afif Thufail Department of Chemistry, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
  • Ahmad Zaki Raihan Department of Chemistry, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
  • Sugianto Department of Chemistry, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
  • Haryo Satriya Oktaviano Downstream Research and Technology Innovation, Research and Technology Innovation, PT Pertamina (Persero), Sopo Del Tower A, Floor 51, Jakarta 12950, Indonesia
  • Hanida Nilasari Downstream Research and Technology Innovation, Research and Technology Innovation, PT Pertamina (Persero), Sopo Del Tower A, Floor 51, Jakarta 12950, Indonesia
  • Ahmad Subhan Research Center for Advanced Materials-National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia
  • Agung Nugroho Department of Chemical Engineering, Universitas Pertamina, Jalan Teuku Nyak Arief, Simprug, Kebayoran Lama, Jakarta 12220, Indonesia
Keywords: Battery Performance, Lithium Ion Battery, NCM, Synthesis

Abstract

In this article, we report and compare the synthesis method of the active cathode materials based on nickel‐cobalt‐manganese (NCM) for lithium-ion battery application. We evaluate the hydrothermal and solid-state reaction method in NCM-622 synthesis, the material characterizations, and the battery performance. Based on the analytical results using X-ray diffraction (XRD), particles synthesized using hydrothermal and solid-state methods exhibit a highly crystalline NCM phase. NCM particles synthesized using solid-state reaction exhibit high-rate performance up to 10 C. The electrochemical impedance spectroscopy analysis shows that the charge transfer resistance (Rct) of NCM synthesized by the solid-state reaction (SSR) method was 25.9% lower than hydrothermal. Meanwhile, the ionic diffusivity of the SSR sample was 38.5% higher than the hydrothermal sample. These two factors lead to better performance when tested in a lithium-ion battery.

References

Andre, D., Kim, S.-J., Lamp, P., Lux, S.F., Maglia, F., Paschos, O., and Stiaszny, B., 2015. “Future generations of cathode materials: an automotive industry perspective.” J. Mater. Chem. A, 3, 6709–6732. https://doi.org/10.1039/C5TA00361J

Bak, S.-M., Hu, E., Zhou, Y., Yu, X., Senanayake, S.D., Cho, S.-J., Kim, K.-B., Chung, K.Y., Yang, X.-Q., and Nam, K.-W., 2014. “Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy.” ACS Appl. Mater. Interfaces 6, 22594–22601. https://doi.org/10.1021/am506712c

Bishnoi, A., Kumar, S., and Joshi, N., 2017. “Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites,” in: Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K.B.T.-M.M. in N.C. (Eds.), Micro and Nano Technologies. Elsevier, pp. 313–337. https://doi.org/10.1016/B978-0-323-46141-2.00009-2

Cao, Xiaoyu, Zhao, Y., Zhu, L., Xie, L., Cao, Xiaoli, Xiong, S., and Wang, C., 2016. “Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol- Gel Method.” Int. J. Electrochem. Sci., 11, 5267–5278. https://doi.org/10.20964/2016.06.93

Chao, M., and Shuang-Yuan, T., 2020. “Hydrothermal Synthesis and Electrochemical Performance of Micro-spherical LiNi1/3Co1/3Mn1/3O2 Cathode Material.” Int. J. Electrochem. Sci., 15, 9392–9401. https://doi.org/ 10.20964/2020.09.53

Chen, C.-L., Chiu, K.-F., Leu, H.J., and Chen, C.C., 2013. “Iron Hexacyanoferrate Based Compound Modified LiMn2O4 Cathodes for Lithium Ion Batteries.” J. Electrochem. Soc., 160, A3126. https://doi.org/ 10.1149/2.020305jes

Chong, S., Liu, Y., Yan, W., and Chen, Y., 2016. “Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li1.2NixMn0.8−xO2 cathode materials for lithium-ion batteries.” RSC Adv. 6, 53662–53668. https://doi.org/10.1039/C6RA09454F

Deng, C., Zhang, S., Fu, B.L., Yang, S.Y., and Ma, L., 2010. “Synthetic optimization of nanostructured Li[Ni1/3Mn1/3Co1/3]O2 cathode material prepared by hydroxide coprecipitation at 273K.” J. Alloys Compd., 496, 521–527. https://doi.org/ 10.1016/j.jallcom.2010.02.094

Domi, Y., Usui, H., Sugimoto, K., and Sakaguchi, H., 2019. “Effect of Silicon Crystallite Size on Its Electrochemical Performance for Lithium-Ion Batteries.” Energy Technol., 7, 1800946. https://doi.org/https://doi.org/10.1002/ente.201800946

Geldasa, F.T., Kebede, M.A., Shura, M.W., and Hone, F.G., 2022. “Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review.” RSC Adv., 12, 5891–5909. https://doi.org/10.1039/D1RA08401A

Habibi, A., Jalaly, M., Rahmanifard, R., and Ghorbanzadeh, M., 2018. “The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li(Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries.” New J. Chem., 42, 19026–19033. https://doi.org/10.1039/C8NJ05007D

Huang, X., Zhang, P., Liu, Z., Ma, B., Zhou, Y., and Tian, X., 2022. “Fluorine Doping Induced Crystal Space Change and Performance Improvement of Single Crystalline LiNi0.6Co0.2Mn0.2O2 Layered Cathode Materials.” ChemElectroChem, 9, e202100756. https://doi.org/https://doi.org/10.1002/celc.202100756

Jan, S.S., Nurgul, S., Shi, X., Xia, H., and Pang, H., 2014. “Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification.” Electrochim. Acta, 149, 86–93. https://doi.org/10.1016/j.electacta.2014.10.093

Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., 2014. “Comparative issues of cathode materials for Li-ion batteries.” Inorganics, 2, 132–154. https://doi.org/ 10.3390/inorganics2010132

Kasnatscheew, J., Evertz, M., Streipert, B., Wagner, R., Klöpsch, R., Vortmann, B., Hahn, H., Nowak, S., Amereller, M., Gentschev, A.-C., Lamp, P., and Winter, M., 2016. “The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.” Phys. Chem. Chem. Phys., 18, 3956–3965. https://doi.org/10.1039/C5CP07718D

Kim, Y., 2012. “Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance As a Cathode Material for Lithium Ion Batteries.” ACS Appl. Mater. Interfaces, 4, 2329–2333. https://doi.org/10.1021/am300386j

Konishi, H., Yoshikawa, M., and Hirano, T., 2013. “The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x = 0, 0.02, 0.04).” J. Power Sources, 244, 23–28. https://doi.org/10.1016/j.jpowsour.2013.05.004

Konishi, H., Yuasa, T., and Yoshikawa, M., 2011. “Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-Ion batteries.” J. Power Sources, 196, 6884–6888. https://doi.org/10.1016/j.jpowsour.2011.01.016

Li, T., Yuan, X.-Z., Zhang, L., Song, D., Shi, K., and Bock, C., 2020. “Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries.” Electrochem. Energy Rev., 3, 43–80. https://doi.org/10.1007/s41918-019-00053-3

Liu, S., Xiong, L., and He, C., 2014. “Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode.” J. Power Sources, 261, 285–291. https://doi.org/10.1016/j.jpowsour.2014.03.083

Luo, B., Jiang, B., Peng, P., Huang, J., Chen, J., Li, M., Chu, L., and Li, Y., 2019. “Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification.” Electrochim. Acta, 297, 398–405. https://doi.org/10.1016/j.electacta.2018.11.202

Ma, C., and Tan, S.-Y., 2020. “Hydrothermal Synthesis and Electrochemical Performance of Micro-spherical LiNi1/3Co1/3Mn1/3O2 Cathode Material.” Int. J. Electrochem. Sci., 15, 9392–9401. https://doi.org/10.20964/2020.09.53

Myung, S.-T., Maglia, F., Park, K.-J., Yoon, C.S., Lamp, P., Kim, S.-J., and Sun, Y.-K., 2017. “Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives.” ACS Energy Lett., 2, 196–223. https://doi.org/10.1021/acsenergylett.6b00594

Or, T., Gourley, S.W.D., Kaliyappan, K., Yu, A., and Chen, Z., 2020. “Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook.” Carbon Energy, 2, 6–43. https://doi.org/https://doi.org/10.1002/cey2.29

Pan, C., Banks, C.E., Song, W., Wang, C., Chen, Q., and Ji, X., 2013. “Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries.” Trans. Nonferrous Met. Soc. China, 23, 108–119. https://doi.org/10.1016/S1003-6326(13)62436-X

Park, O.K., Cho, Y., Lee, S., Yoo, H.-C., Song, H.-K., and Cho, J., 2011. “Who will drive electric vehicles, olivine or spinel?” Energy Environ. Sci., 4, 1621–1633. https://doi.org/10.1039/C0EE00559B

Peng, L., Zhu, Y., Khakoo, U., Chen, D., and Yu, G., 2015. “Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability.” Nano Energy, 17, 36–42. https://doi.org/10.1016/j.nanoen.2015.07.031

Rahmawati, M., Purwanto, A., Widiyandari, H., Paramitha, T., Nizam, M., Dyartanti, E.R., Muzayahna, S.U., and Yudha, C.S., 2020. “Synthesis of NMC 111 via urea assisted solid state method.” AIP Conf. Proc., 2197, 50007. https://doi.org/10.1063/1.5140919

Seungbum, H., Yoon, B., Lim, H., Seo, H.-K., Lee, C.-R., and Seo, I., 2022. “Photo-Charging of Li(Ni0.65Co0.15Mn0.20)O2 Lithium-Ion Battery Using Silicon Solar Cells.” Materials (Basel)., 15. https://doi.org/10.3390/ma15082913

Shi, S.J., Tu, J.P., Tang, Y.Y., Zhang, Y.Q., Liu, X.Y., Wang, X.L., and Gu, C.D., 2013. “Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries.” J. Power Sources, 225, 338–346. https://doi.org/10.1016/j.jpowsour.2012.10.065

Shim, J.-H., Kim, C.-Y., Cho, S.-W., Missiul, A., Kim, J.-K., Ahn, Y.J., and Lee, S., 2014. “Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery.” Electrochim. Acta, 138, 15–21. https://doi.org/10.1016/j.electacta.2014.06.079

Subhan, A., Oemry, F., Khusna, S.N., and Hastuti, E., 2019. “Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries.” Ionics (Kiel)., 25, 1025–1034. https://doi.org/10.1007/s11581-018-2633-0

Tan, S., Wang, L., Bian, L., Xu, J., Ren, W., Hu, P., and Chang, A., 2015. “Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification.” J. Power Sources, 277, 139–146. https://doi.org/10.1016/j.jpowsour.2014.11.149

Toprakci, O., Toprakci, H.A.K., Ji, L., and Zhang, X., 2010. “Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries.” KONA Powder Part. J., 28, 50–73. https://doi.org/10.14356/kona.2010008

Trevisanello, E., Ruess, R., Conforto, G., Richter, F.H., and Janek, J., 2021. “Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion.” Adv. Energy Mater., 11, 2003400. https://doi.org/https://doi.org/10.1002/aenm.202003400

Wang, L., Wang, Y., Yang, Xiaheng, Wang, J., Yang, Xiduo, and Tang, J., 2019. “Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries.” J. Mater. Sci., 54, 12723–12736. https://doi.org/10.1007/s10853-019-03807-y

Wang, L., Wu, B., Mu, D., Liu, X., Peng, Y., Xu, H., Liu, Q., Gai, L., and Wu, F., 2016. “Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries.” J. Alloys Compd., 674, 360–367. https://doi.org/10.1016/j.jallcom.2016.03.061

Widiyandari, H., Sukmawati, A.N., Sutanto, H., Yudha, C., and Purwanto, A., 2019. “Synthesis of LiNi0.8Mn0.1Co0.1O2 cathode material by hydrothermal method for high energy density lithium ion battery.” J. Phys. Conf. Ser., 1153, 12074. https://doi.org/10.1088/1742-6596/1153/1/012074

Wu, L., Nam, K.-W., Wang, X., Zhou, Y., Zheng, J.-C., Yang, X.-Q., and Zhu, Y., 2011. “Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries.” Chem. Mater., 23, 3953–3960. https://doi.org/ 10.1021/cm201452q

Wu, Y., Li, M., Wahyudi, W., Sheng, G., Miao, X., Anthopoulos, T.D., Huang, K.-W., Li, Y., and Lai, Z., 2019. “Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al2O3 Sol-Gel Coating.” ACS omega., 4 (9), 13972–13980 https://doi.org/10.1021/acsomega.9b01706

Yang, Z., Lu, J., Bian, D., Zhang, W., Yang, X., Xia, J., Chen, G., Gu, H., and Ma, G., 2014. “Stepwise coprecipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries.” J. Power Sources, 272, 144–151. https://doi.org/10.1016/j.jpowsour.2014.08.052

Zheng, X., Li, X., Huang, Z., Zhang, B., Wang, Z., Guo, H., and Yang, Z., 2015. “Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by ultrasonic-assisted coprecipitation method.” J. Alloys Compd., 644, 607–614. https://doi.org/10.1016/j.jallcom.2015.04.173

Zhu, H., Li, J., Chen, Z., Li, Q., Xie, T., Li, L., and Lai, Y., 2014. “Molten salt synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials.” Synth. Met., 187, 123–129. https://doi.org/10.1016/j.synthmet.2013.10.032.

Published
2022-12-31
How to Cite
Pradanawati, S. A., Nursanto, E. B., Thufail, A., Raihan, A. Z., Sugianto, Oktaviano, H. S., Nilasari, H., Subhan, A., & Nugroho, A. (2022). A Comparative Study on The Electrochemical Properties of Hydrothermal and Solid-State Methods in The NCM Synthesis for Lithium Ion Battery Application. ASEAN Journal of Chemical Engineering, 22(2), 284-295. Retrieved from https://dev.journal.ugm.ac.id/v3/AJChE/article/view/9253
Section
Articles