Effect of Carrier Agents and Operational Parameters on the Physical Quality of Spray-Dried Tomato Powder: A Review

  • S.M Anisuzzaman Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Collin G Joseph Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia. Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Janice L. H. Nga Planning and Development Economics Programme, Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Fatin Nadiah Ismail Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
Keywords: Carrier agents, Gum Arabic, Lycopene, Maltodextrin, Pectinase, Spray Drying

Abstract

Tomatoes are one of the most frequently consumed crops in the world, and they can be cultivated all year using present production methods. Tomatoes are produced for either manufacturing tomato paste, tomato pulp, tomato sauce, and ketchup or consumed as fresh fruit. However, excessive moisture levels in tomatoes generally result in increased water activity that promotes quality degradation and increases enzymatic activity, which leads to microbial growth. Therefore, the spray drying method is used to produce dried food powder, which may reduce postharvest losses while adding value to the raw product. The purpose of the paper is to review scientific research on the influence of carrier agents and operational parameters of spray-drying fruit extracts on physicochemical qualities such as moisture content, hygroscopicity, solubility, bulk density, water activity, and color difference. The current paper reviews the various formulation and process factors that impact the physicochemical characteristics of tomato powder microparticles produced by spray drying in order to find the optimum parameters to produce tomato powders with a high and effective product yield with improved powder qualities.

References

Abadio, F. D. B., Domingues, A. M., Borges, S. V. and Oliveira V. M. 2004. “Physical properties of powdered pineapple (Ananas comosus) juice-effect of malt dextrin concentration and atomization speed,” J. Food Eng. 64, 285-287.

Adhikari, B., Howes, T., Bhandari, B. R. and Troung, V. 2003. “Characterization of the surface stickiness of fructose-maltodextrin solutions during drying,” Drying Technol. 21, 17-34.

Amit, S. K., Uddin, M. M., Rahman, R., Islam, S .M. R. and Khan, M. S. 2017. “A review on mechanisms and commercial aspects of food preservation and processing,” Agric. Food Secur. 6, 1-22.

Allamilla-Beltran, L., Chanona-Prez, J. .J., Jimnez-Aparicio, A. R. and Gutrrez-Lopez G.F. 2005. “Description of morphological changes of particles along spray drying,” J. Food Eng. 67, 179-184.

A-Sun, K., Thumthanaruk, B., Lekhavat, S. and Jumnongpon, R. 2016. “Effect of spray drying conditions on physical characteristics of coconut sugar powder,” Int. Food Res. J. 23, 1315-1319.

Barbosa, J., Borges, S., Amorim, M., Pereira, M. J., Oliveira, A., Pintado, M. E. and Teixeira, P. 2015. “Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder,” J. Funct. Foods 17, 340-351.

Barbosa-Canovas, G. and Juliano, P. 2005. “Compression and compaction characteristics of selected food powders,” Adv. Food Nutr. Res. 49, 233-307.

Banat, B. F., Jumah, R., Al-Asheh, S. and Hammad, S. 2002. “Effect of operating parameters on spray drying of tomato paste,” Eng. Life Sci. 2, 403-407.

Bemiller, J. N. and Whistler, R. L. 1996. Carbohydrates. In: O. R. Fennema, Ed., Food Chemistry, Marcel Dekker, New York, 157-225.

Bicudo, M. O. P., Jó, J., Oliveira, G. A. D., Chaimsohn, F. P., Sierakowski, M. R., Freitas, R. A. D. and Ribani, R. H. 2015. “Microencapsulation of jucara (Euterpe edulis M.) pulp by spray drying using different carriers and drying temperatures,” Drying Technol. 33, 153-16.

Bhandari, B. R., Datta, N. and Howes, T. 1997. “Problems associated with spray drying of sugar-rich foods,” Drying Technol. 15, 37-41.

Bazaria, B. and Kumar, P. 2018. “Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM),” J. Saudi Soc. Agric. Sci. 17, 408-415.

Cai, Y. Z. and Corke, H. 2000. “Production and properties of spray-dried amaranthus betacyanon pigments,” J. Food Sci. 65, 1248-1252.

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M. and Cal-Vidal, J. 2005. “Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization,” Innov. Food Sci. Emerg. Technol. 6, 420- 428.

Chang, L. S., Tan, Y. L. and Pui, L. P. 2020. “Production of spray-dried enzyme-liquefied papaya (Carica papaya L.) powder,” Braz. J. Food Technol. 23, 1-16.

Chegini, R. G. and Ghobadian, B. 2007. “Spray dryer parameters for fruit juice drying,” World J. Agric. Res. 3, 230-236.

Chegini, R. G. and Ghobadian, B. 2005. “Effect of spray drying conditions on physical properties of orange juice powder,” Drying Technol. 23, 657-668.

Corrêa-Filho, L. C., Lourenço, S. C., Duarte, D. F., Moldão-Martins, M. and Alves, V. D. 2019. “Microencapsulation of tomato (Solanum lycopersicum L.) pomace ethanolic extract by spray drying: Optimization of process conditions, “ Appl. Sci. 9, 1-15.

Dalmoro, A. Barba, A., Lamberti, G. and d'Amore, M. 2012. “Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach,” Eur. J. Pharm. Biopharm. 80, 471-477.

De Jesus, S. S. and Filho, M. R. 2014. “Drying of α-amylase by spray drying and freeze-drying-A comparative study,” Braz. J. Chem. Eng. 31, 625-631.

Desai, K. G. H. and Park, H. G. 2005. “Recent developments in microencapsulation of food ingredients,” Drying Technol. 23, 1361-1394.

Dolinsky, A., Maletskata, Y. and Snezhkin, Y. 2000. “Fruit and vegetable powders production technology on the bases of spray and convective drying methods,” Drying Technol. 18, 747-758.

Du, J., Ge, Z. Z., Xu, Z., Zou, B., Zhang, Y. and Li, C. M. 2014. “Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders,” Drying Technol. 32, 1157-1166.

Fazaeli, M., Emam-Djomeh, Z., Ashtari, A. K. and Omid, M. 2012. “Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder,” Food Bioprod. Process. 90, 667-675.

Ferrari, C. C., Germer, M. S. P., Alvim, I. D. and de Aguirre, J. M. 2013. “Storage stability of spray-dried blackberry powder produced with maltodextrin or gum Arabic,” Drying Technol. 31, 470-478.

Finney, J., Buffo, R. and Reineccius, G. A. 2002. “Effects of type of atomization and processing temperatures on the physical properties and stability of spray-dried flavors,” J. Food Sci. 67, 1108-1114.

Gabas, A. L., Telis,V. R. N., Sorbal, P. J. N. and Telis-Romero, J. 2007. “Effect of maltodextrin and Arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder,” J. Food Eng. 82, 246-252.

Gharib, H. M., Abajy, M. Y. and Omaren, A. 2020. “Investigating the effect of some fluoroquinolones on C-reactive protein levels and ACh-Induced blood pressure reduction deviations after aging of diabetes in STZ-Induced diabetic wistar rats,” Res. J. Pharm. Technol. 13, 5993-5998.

Gharsallaoui, A., Roudaut, G., Voilley, C. O. and Saurel, R. 2007. “Applications of spray-drying in microencapsulation of food ingredients: An overview,” Food Res. Int. 40, 1107-1121.

Gong, Z., Zhang, M., Mujumdar, A. S. and Sun, J. 2007. “Spray drying and agglomeration of instant bayberry powder,” Drying Technol. 26, 116-121.

Goula, A. M. and Adamopoulos, K. G. 2008. “Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery,” Drying Technol. 26, 714-725.

Goula, A .M. and Adamopoulos, K. G. 2005. “Stability of lycopene during spray drying of tomato pulp,” LWT - Food Sci Technol. 8, 479-487.

Goula, A. M., Adamopoulos, K. G. and Kazakis, N. A. 2004. “Influence of spray drying conditions on tomato powder properties,” Drying Technol. 22, 1129-1151.

Grabowski, J. A., Truong, V. D. and Daubert, D. R., 2006. “Spray drying of amylase hydrolyzed sweetpotato puree and physicochemical properties of powder,” J. Food Sci. 71, E209–E217.

Hu, L., Zhang, J., Hu, Q., Gao, N., Wang, S., Sun, W., Sun, Y. and Yang, X. 2016. “Microencapsulation of brucea javanica oil: Characterization, stability and optimization of spray drying conditions,” J. Drug Deliv. Sci. Technol. 36, 46-54.

Jittanit, W., Niti-Att, S. and Techanuntachikul, O. 2010. “Study of spray drying of pineapple juice using maltodextrin as an adjunct.,” Chiang Mai J. Sci. 37, 498-506.

Kader, A. A. 2005. “Increasing food availability by reducing postharvest losses of fresh produce.,” Acta Hortic. 682, 2169-2176.

Karaca, A. C., Guzel, O. and Mehmet, M. A. 2016. “Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate,” J. Sci. Food Agric. 96, 449-455.

Kha, T., Nguyen, M. and Roach, P. (2010). “Efefcts of spray drying conditions on the physicochemica and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder,” J. Food Eng. 98, 385-392.

Krishnaiah, D., Bono, A., Sarbatly, R., Nithyanandam, R. and Anisuzzaman, S. M., 2015. “Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology,” J. King Saud Univ. Eng. Sci. 27, 26-36.

Krishnaiah, D., Nithyanandam, R. and Sarbatly, R. 2014. “A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties,” Crit. Rev. Food Sci. Nutr. 54, 449-473.

Liu, Y., Chen, F. and Guo, H. 2017. “Optimization of bayberry juice spray drying process using response surface methodology,” Food Sci. Biotechnol. 26, 1235-1244.

Movahhed, M. K. and Mohebbi, M. 2016. “Spray drying and process optimization of carrot – celery juice,” J. Food Process. Preserv. 40, 212-225.

Murugesan, R. and Orsat, V. 2011. “Spray Drying for the production of nutraceutical ingredients-A review,” Food Bioproc. Tech. 8, 1-12.

Muzaffar, K., Nayik, G. A. and Kumar, P. 2015. “Stickiness problem associated with spray drying of sugar and acid rich foods : A mini review,” J. Nutr. Food Sci. S12:003, 1-3.

Nazir, F., Bashir, M., Salim, R. and Nissar, N. 2018. “Microencapsulation techniques for food ingredients,” Int. J. Adv. Res. Sci Eng. 8, 2163-2167

Niakousari, M., Gahruie, H. H., Razmjooei, M., Roohinejad, S. and Greiner, R. 2017. “Chapter 5-Effects of innovative processing technologies on microbial targets based on food categories: Comparing traditional and emerging technologies for food preservation,” Innov. Technol. Food Preserv. 133-185.

Nijdam, J. J. and Langrish, T. A. J. 2006. “The effect of surface composition on the functional properties of milk powders,” J. Food Eng. 77, 919-925.

Nurhadi, B., Andoyo, R. and Indiarto, R. 2012. “Study the properties of honey powder produced from spray drying and vacuum drying method,” Int. Food Res. J. 19, 907-912.

Obon, J. M., Castellar, M. R., Alacid, M. and Fernandez-Lopez, J. A. 2009. “Production of a red-purple food colorant from opuntia stricta fruits by spray drying and its application in food model systems,” J. Food Eng. 90, 471-479.

Ozkan, G., Franco, P., De Marco, I., Xiao, J. and Capanoglu, E. 2019. “A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications,” Food Chem. 272, 494-506.

Papadakis, S. E., Gardeli, C. and Tzia, C. 2006. “Spray drying of raisin juice concentrate,” Drying Technol. 24, 173-180.

Patil, V., Chauhan, A. K. and Singh, R. P. 2014. “Optimization of the spray-drying process for developing guava powder using response surface methodology,” Powder Technol. 253, 230-236.

Pui, L. P., Karim, R., Yusof, Y. A, Wong, C. W. and Ghazali, H. M. 2020. “Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus integer) fruit powder,” J. Food Meas. Charact. 14, 3238-3249.

Quek, S. Y., Chok, N. K. and Swedlund, P. 2007. “The physicochemical properties of spray-dried watermelon powders,” Chem. Eng. Process. 6, 386-392.

Raghavan, G. S. V. and Orsat, V. 2007. “Recent advances in drying of biomaterials for superior quality bioproducts,” Asia-Pac. J. Chem. Eng. 2, 20-29.

Righetto, A. M. and Netto, F. M. 2005. “Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola,” Int. J. Food Prop. 8, 337-346.

Rodriguez-Hernandez, G., Gonzalez-Garcia, R., Grajales-Lagunes, A. and Ruiz-Cabrera, M. 2005. “Spray-drying of cactus pear juice (Opuntia streptacantha): Effect on the physicochemical properties of powder and reconstituted product,” Drying Technol. 23, 955-973.

Roos, Y. and Karel, M. 1991. “Water and molecular weight effects on glass transitions on amorphous carbohydrates and carbohydrate solutions,” J. Food Sci. 56, 1676-1681.

Santana, A. A., Martin, L. G. P., de Oliveira, R. A., Kurozawa, L. E. and Park, K. J. 2017. “Spray drying of babassu coconut milk using different carrier agents,” Drying Technol. 35, 76-87.

Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., Pedro, S. and Gomes, P. S. 2017. Spray Drying: An Overview, Biomaterials - Physics and Chemistry - New Edition, Rosario Pignatello and Teresa Musumeci, Intech Open.

Sharif, Z. M., Mustapha, F., Jai, J., Yusof, M. N. and Zaki, N. 2017. “Review on methods for preservation and natural preservatives for extending the food longevity,” Chem. Eng. Res. Bull. 19, 145-153

Sharangi, A. B. and Datta, S. 2015. Value addition of horticultural crops: Recent trends and future directions. Springer, 1-339.

Shi, Q., Fang, Z. and Bhandari, B. 2013. “Effect of addition of whey protein isolate on spray-drying behaviour of honey with maltodextrin as a carrier material,” Drying Technol. 31, 1681-1692.

Singh, R., Mangaraj, S. and Kulkarni, S. D. 2006. “Particle size analysis of tomato powder,” J. Food Process. Preserv. 30, 87-98.

Shishir, M. R. I. and Chen, W. 2017. “Trends of spray drying: A critical review on drying of fruit and vegetable juices,” Trends Food Sci. Technol. 65, 49-67.

Shrestha, A., Ua-arak, T., Howes, T., Adhikari, B. and Bhandari, B. 2007. “Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT),” Int. J. Food Prop. 10, 661-673.

Sobulska, M. and Zbicinski, I. 2021. “Advances in spray drying of sugar-rich products,” Drying Technol. 39, 1-26.

Sousa, A. S., Borges, S. V., Magalhães, N. F., Ricardo, H. V. and Azededo, A. D. 2008. “Spray-dried tomato powder : reconstitution properties and colour,” Braz. Arch. Biol. Technol. 51, 807-814.

Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C. and Tonon, R. V. 2018. “Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability,” LWT 91, 286-292.

Souza, A. S., Borges, S. V., Magalhães, N. F., Ricardo, H. V, Cereda, M. P. and Daiuto, E.R. 2009. “Influence of spray drying conditions on the physical properties of dried pulp tomato,” Food Sci. Technol. Int. 29, 291-294.

Swetha, K. and Lalunaik, B. 2018. “Alternative technologies for tomato postharvest quality preservation,” J. Pharmacogn. Phytochem. 7, 1678-1682.

Tan, L. W., Ibrahim, M. N., Kamil, R. and Taip, F. S. 2011. “Empirical modeling for spray drying process of sticky and non-sticky products” Procedia Food Sci. 1, 690–697.

Tontul, I. and Topuz, A. 2017. “Spray-drying of fruit and vegetables juices: Effect of drying conditions on the product yield and physical properties,” Trends Food Sci. Technol. 63, 91-102.

Toneli, J., Park, K. J., Negreiros, A. and Murr, F. 2010. “Spray drying optimization to obtain inulin powder,” Drying Technol. 28, 369-379.

Tonon, R. V., Freitas, S. S. and Hubinger, M. D. 2011. “Spray drying of açai (Euterpe Oleraceae Mart.) juice: Effect of inlet air temperature and type of carrier agent,” J. Food Process. Preserv. 35, 691-700.

Tran, T. and Nguyen, H. 2018. “Effects of spray-drying temperatures and carriers on physical and antioxidant properties of lemongrass leaf extract powder,” Beverages 4, 84-98.

Truong, V., Bhandari, B. R. and Howes, T. 2005. “Moisture and glass optimization of co-current spray drying process of sugar rich foods: transition temperature profile during drying,” J. Food Eng. 71, 55-65.

Walton, D. E. 2000. “The morphology of spray-dried particles. A qualitative view,” Drying Technol. 18, 1943-1986.

Vardin, H. and Yasar, M. 2012. “Optimisation of pomegranate (Punica Granatum L.) juice spray-drying as affected by temperature and maltodextrin content,” Int. J. Food Sci. Technol. 47, 167-176.

Yousefi, S., Emam-Djomeh, Z. and Mousavi, S. M. 2011. “Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.),” J. Food Sci. Technol. 48, 677-684.

Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T. and Hu, Z. 2014. A new tomato NAC (N AM/A TAF1/2/C UC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation,” Plant Cell Physiol. 55, 119-135.

Published
2022-12-31
How to Cite
Anisuzzaman, S., Joseph, C. G., Nga, J. L. H., & Ismail, F. N. (2022). Effect of Carrier Agents and Operational Parameters on the Physical Quality of Spray-Dried Tomato Powder: A Review. ASEAN Journal of Chemical Engineering, 22(2), 228-247. Retrieved from https://dev.journal.ugm.ac.id/v3/AJChE/article/view/9247
Section
Articles