Microstructural Dependency of Diffusion in Glass Flake-Reinforced Vinyl Ester Resins
Abstract
Vinyl ester resins are utilized for long-term corrosion protection of metal, alloy, and concrete substrates against concentrated acids, alkalis, and solvents at high temperature. Glass flakes are usually added as fillers to reduce chemical diffusion within the vinyl ester matrix. A common industry practice is to use glass flakes with large aspect ratio, high volume fraction, and in parallel alignment to surface in chemical contact for barrier applications. During processing and curing of glass flake-filled vinyl ester resins, irregular microstructures such as reduced flake aspect ratio and random orientation of flakes are commonly observed. Such microstructures can affect the overall chemical diffusion, resulting to barrier properties less predictable by simple diffusion models. Therefore, in this study, a simple 2D random walk simulation procedure is used in attempt to estimate the microstructural dependency of diffusion in glass flake-reinforced vinyl ester resins. While the random walk simulations are in good agreement with the tortuosity-based diffusion models in terms of microstructural effects, in most cases the simulation results are inconsistent with the experimental measurements of acid diffusion in glass flake-filled vinyl ester resins. A possible cause for this is the poor adherence of vinyl ester resin to glass flakes. Osmotic cracks are also formed during immersion which also influences overall diffusion through the material.References
2. Crank, J. (1975). The Mathematics of Diffusion, Clarendon Press, Oxford, U.K.
3. Eitzman, D. M., R. R. Melkote, and E. L. Cussler. (1996). “Barrier Membranes with Tipped Impermeable Flakes,” AIChEJ, 42, 2 – 9.
4. Farrar, N. R. and K. H. G. Ashbee. (1978). “Destruction of Epoxy Resins and of Glass-Fibre-Reinforced Epoxy Resins by Diffused Water,” J. Phys. D: Appl. Phys., 11, 1009 – 1013.
5. Goodyer, C. E. and A. L. Bunge. (2007). “Numerical Simulations Compared Against Experimental Results for Barrier Membranes with Lithographically Printed Flakes,” J. Membr. Sci., 306, 196 – 208.
6. Goodyer, C. E. and A. L. Bunge. (2009). “Comparison of Numerical Simulations of Barrier Membranes with Impermeable Flakes,” J. Membr. Sci., 329, 209 – 218.
7. Lape, N. K., E. Nuxoll, and E. L. Cussler. (2004). “Polydisperse Flakes in Barrier Films,” J. Membr. Sci., 236, 29 – 37.
8. Liu, Q. and E. L. Cussler. (2006). “Barrier Membranes Made with Lithographically Printed Flakes,” J. Membr. Sci., 285, 56 – 67.
9. Ly, Y. P. and Y. Cheng. (1997). “Diffusion in Heterogeneous Media Containing Impermeable Domains Arranged in Parallel Arrays of Variable Orientation,” J. Membr. Sci., 133, 207 – 215.
10. Moggridge, G. D., N. K. Lape, C. Yang, and E. L. Cussler. (2003). “Barrier Films Using Flakes and Reactive Additives,” Prog. Org. Coat., 46, 231 – 240.
11. Pajarito, B. B., M. Kubouchi, H. Tomita, and S. Aoki. (2010). “2D Random Walk Simulation and Experimental Analysis of Barrier Properties of Vinyl Ester Glass Flake Linings,” Proceedings from the Materials Science & Technology Conference.
12. Pajarito, B. B., M. Kubouchi, H. Tomita, and T. Sakai. (2012). “Absorption and Wet Retention of Flexural Properties of E-Glass Flake/Epoxy Composites under Corrosive Environment,” J. Mater. Sci. and Tech. Japan., 49, 32 – 38.
13. Schweitzer, P. A. (2007). Corrosion of Polymers and Elastomers, CRC Press.
14. Widom, B. (1966). “Random Sequential Addition of Hard Spheres to a Volume,” J. Chem. Phys., 44, 3888 – 3894.
15. Yang, C., W. H. Smyrl, and E. L. Cussler. (2004). “Flake Alignment in Composite Coatings,” J. Membr. Sci., 231, 1 – 12.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.