Modelling as an Aid to Biomass Combustion in Plant Design
Abstract
Solid biomass materials are recognized as a sustainable energy source worldwide. In particular, lump biomass has considerable potential for exploitation as fuel in small- size underfeed stokers. The paper considers the design features of the underfeed stoker and its advantages in the burning of biomass. Some expe. i nental results are given to indicate the plant parameters to be modelled. An initial modelling approach is described for single-particle solid fuel combustion to predict flow patterns using the FLUENT Computational Fluid Dynamic (CFD) code. Predictions are compared against available experimental results showing reasonable qualitative and quantitative agreement. The paper concludes with information on the constraints on the modelling study and proposals for new work.References
2. Blackham, A. U., Smoot, L. D., and Yousefi, P. (1994). “Rates of oxidation of millimetre- size char particles: Simple experiments," Fuel, 73, 602–12.
3. Bruch, C., Peters, B., and Nussbaumer, T. (2003). "Modelling wood combustion under fixed-bed conditions," Fuel, 82, 729-38.
4. Eaton, A. M., Smoot, L. D., Hill, S. C., and Eatough, C. N. (1999). "Components, formulations, solutions, evaluation and application of comprehensive combustion models," Programme in Energy and Combustion Science, 25, 387-436.
5. FLUENT, Inc. (1998). FLUENT users guide. Sheffield, U.K. FLUENT, Inc. (1998). GAMBIT users guide.
6. Sheffield, U.K. Purvis, M. R. I., Tadulan, E. L., and Tariq, A. S. C. (2000). "NO emissions from the underfeed combustion of coal and biomass." J. Institute of Energy, 73, 495, 70–7.
7. Purvis, M. R.I., Tadulan, E. L., and Tariq, A. S. (2000). “NO, control by air staging in a small biomass-fuelled underfeed stoker," Int. J. Energy Research, 24, 917-33.
8. Santos, S. O. (2002). "The development of an underfeed stoker for biomass combustion," Ph.D. Dissertation, Department of Mechanical and Design Engineering, University of Portsmouth, U.K.
9. Solomon, P. R., Serio, M. A., and Suberg, E. M. (1992). "Coal pyrolysis: Experiments, kinetic rates, and mechanisms," Progress in Energy and Combustion, 18, 133-220.
10. Yang, Y. B., Yamauchi, H., Nasserzadeh, V., and Swithenbank, J. (2003). “Effects of fuel devolatilisation on the combustion of simulated solid wastes in a packed bed." Fuel. Online:
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.