Optimization of 5-kW Mobile and Portable PEMFC System via Energy Integration
Abstract
The main objective of this study is to design an energy recovery system for the Proton Electrolyte Membrane Fuel Cell (PEMFC) that will optimize energy use through heat integration. A PEMFC system with a power output of 5 kW was used in the case study. Methanol, which served as primary fuel source of the autothermal reformer (ATR) system, was fed together with steam and oxygen. Based on the conceptual design, the ATR product contains about 73% H2' 2% CO, and 25% C02' The hydrogen-rich reform ate produced by reforming primary fuels in the fuel proC€t::30r ystem, which scontains a significant amount of CO, was reduced further via Water Gas Shift (WGS) reactor, Tubular Ceramic Membrane (TCM), and Pressure Swing Adsorber (PSA) in series. From the plots, the pinch point was determined at 540°C,the minimum process heating requirement from hot utilities QH mon at 140 W, and the minimum process cooling requirement from cold utilities Qc. at 96 W. Furthermore, energy recovery for both heating and cooling purposes aft~; heat integration registered at 92% and 95%, respectively. Also, the number of heat exchangers reduced from 7 to 4 after heat integrat
References
Cao, Y., and Guo, Z. (2002). "Performance evaluation of an energy recovery system for fuel reforming of PEM fuel cell ower plants," J. Power Sources, 109, 2, 287–93.
Chu, D., and Jiang, R. (1999). "Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks, Part I. Evaluation and simulation of an air-breathing PEMFC stack," J. Power Sources, 83, 1-2, 128_33.
De Ruyck, J., Lavric, V., Baetens, D., and Plesu. V. (2003). "Broadening the capabilities of pinch analysis through virtual heat exchanger networks," Energy Conversion & Mgt, 44, 2321-29.
Heizel, A., Hebling, C., Müller, M., Zedda, M., and Müller, C. (2002). "Fuel cells for low power applications," J. Power Sources, 105, 2, 148–53.
Linnhoff, B. (1993). “Pinch analysis--A state of-the-art overview," Trans. IchemE, 71, A, 503–22.
Mizsey, P., Newson, E., Truong, T. H., and Hottinger, P. (2001). "The kinetic of methanol decomposition: A part of autothermal partial oxidation to produce hydrogen foe fuel cells,” Applied Catalyst, A-General, 213, 233-37.
Riensche, E., Meusinger, J., Stimming , U., and Unverz, G. (1998). "Optimization of a 200-kW SOFC cogeneration power plant, Part II: Variation of the flow sheet," J. Power Sources, 71, 306-14.
Zalc, J. M., and Löffler, D. G. (2002). "Fuel processing for PEM fuel cells: Transport and kinetic issues of system design," J. Power Sources, 111, 1, 58-64.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.