MASTER RECESSION CURVE VISUALIZATION USING SEVEN BASEFLOW RECESSION MODELS IN PAIRED WATERSHEDS

https://doi.org/10.22146/teknosains.90705

Bokiraiya Latuamury(1*), Gun Mardiatmoko(2), Agustinus Kastanya(3)

(1) Department of Forestry, Pattimura University, Ambon-Maluku, Indonesia
(2) Department of Forestry, Pattimura University, Ambon-Maluku, Indonesia
(3) Department of Forestry, Pattimura University, Ambon-Maluku, Indonesia
(*) Corresponding Author

Abstract


River flow recession analysis plays a crucial role in understanding how watersheds release water during dry periods. Consequently, modeling baseflow recession is closely related to the characteristics of unconfined aquifers, storage behavior, and the discharge properties of the watershed. While several theories exist on modeling recession curves, limited research has compared different approaches regarding baseflow recession characteristics. This study aims to model seven baseflow recession equations in paired watersheds in Ambon City. The research methodology involves calibrating seven baseflow recession models using the Recession Curve (RC) 4.0 Hydro Office software. The tested models include Linear Reservoir, Exponential Reservoir, Double Exponential Horton, Dupuit-Boussinesq Aquifer Storage, Depression Storage, Turbulent Flow Model, and Hyperbolic Function Model. The calibration results yield optimal combinations of recession parameters. The parameterization order from highest to lowest is as follows: Depression Storage, followed by the Hyperbolic Function, Exponential Reservoir, Turbulent Flow Model, Double Exponential Horton, Linear Reservoir, and Dupuit-Boussinesq Aquifer Storage. Quantifying baseflow recession constants and coefficients is essential for understanding baseflow behavior. Visualizing the slope of the Recession Curve (MRC) reveals that models with high recession constants tend to have gradual MRCs, while low recession constants result in steep MRCs. The MRC slope further describes the relationship between storage conditions and discharge from the watershed. The advantage of creating MRCs from discontinuous recession segments lies in their ability to appropriately describe the MRC process and provide quantitative parameters relevant to drainage mechanisms. MRCs also serve as an optimal automated computational tool.

Keywords


aquifer characteristics; baseflow recession model; paired watersheds; storage capacity

Full Text:

PDF


References

Adji, T. N., Haryono, E., Fatchurohman, H., & Oktama, R. (2017). Spatial and temporal hydrochemistry variations of karst water in Gunung Sewu, Java, Indonesia. Environmental Earth Sciences, 76(20). https://doi.org/10.1007/s12665-017-7057-z

Aksoy, H., & Wittenberg, H. (2011). Analyse non linéaire des récessions de l’écoulement de base dans des bassins versants à écoulements intermittents. Hydrological Sciences Journal, 56(2), 226–237. https://doi.org/10.1080/02626667.2011.553614

Aksoy, H., & Wittenberg, H. (2015). Baseflow Recession Analysis for Flood-Prone Black Sea Watersheds in Turkey. Clean - Soil, Air, Water, 43(6), 857–866. https://doi.org/10.1002/clen.201400199

Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2016.10.005

Bartlett, M. S., & Porporato, A. (2018). A Class of Exact Solutions of the Boussinesq Equation for Horizontal and Sloping Aquifers. Water Resources Research, 54(2), 767–778. https://doi.org/10.1002/2017WR022056

Basha, H. A. (2020). Flow Recession Equations for Karst Systems. Water Resources Research, 56(7), 1–21. https://doi.org/10.1029/2020WR027384

Botter, G., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2009). Nonlinear storage-discharge relations and catchment streamflow regimes. Water Resources Research, 45(10), 1–16. https://doi.org/10.1029/2008WR007658

Boughton, W. (2015). Master recession analysis of transmission loss in some Australian streams. Australian Journal of Water Resources, 19(1), 43–51. https://doi.org/10.7158/13241583.2015.11465455

Boussinesq, J. (1877). Essai sur la theories des eaux courantes. Memoires presentes par divers savants a l’Academic des Sciences de l’Institut National de France, Tome. In 1877 (XXIII).

Boussinesq, Joseph. (1877). boussinesq1877essai : Essai sur la theorie des eaux courantes. Impr. nationale.

Carlotto, T., & Chaffe, P. L. B. (2019). Computers and Geosciences Master Recession Curve Parameterization Tool ( MRCPtool ): Different approaches to recession curve analysis. Computers and Geosciences, 132(February), 1–8. https://doi.org/10.1016/j.cageo.2019.06.016

Dewandel, B., Lachassagne, P., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026

Endres, A. L., Jones, J. P., & Bertrand, E. A. (2007). Pumping-induced vadose zone drainage and storage in an unconfined aquifer: A comparison of analytical model predictions and field measurements. Journal of Hydrology, 335(1–2), 207–218. https://doi.org/10.1016/j.jhydrol.2006.07.018

Fatchurohman, H., Adji, T. N., Haryono, E., & Wijayanti, P. (2018). Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu. IOP Conference Series: Earth and Environmental Science, 148(1). https://doi.org/10.1088/1755-1315/148/1/012029

Gregor, M. and Malík, P. (2012). User manual for Recession Curve 4.0. Version 2, 1–8.

Griffiths, G., & Clausen, B. (1997). Streamflow recession in basins with multiple water storages. Journal of Hydrology, 190(1), 60–74.

Hammond, M., & Han, D. (2006). Recession curve estimation for storm event separations. Journal of Hydrology, 330(3–4), 573–585. https://doi.org/10.1016/j.jhydrol.2006.04.027

Horton, R. (1933). The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union, 14, 446–460.

Kovács, A. (2003). Geometry and hydraulic parameters of karst aquifers – A hydrodynamic modelling approach. In PhD. thesis (p. 131). La Faculté des sciences de ľUniversité de Neuchâtel, Suisse.

Kullman, E. (1990). Krasovo-puklinové vody. Karst-fissure waters. In GÚDŠ, Bratislava, [in Slovak with Slovak Extended Sumarry] (p. 184).

Latuamury, B., Marasabessy, H., Talaohu, M., & Imlabla, W. (2021). Small island watershed morphometric and hydrological characteristics in Ambon Region, Maluku Province. IOP Conference Series: Earth and Environmental Science, 800(1). https://doi.org/10.1088/1755-1315/800/1/012047

Latuamury, B. O. (2018). Analisis Kurva Resesi Aliran Dasar Menggunakan Model Reservoir Linier Recession Curve Hydrooffice Pada Das Wuryantoro Kabupaten Wonogiri Propinsi Jawa Tengah. Jurnal Teknosains, 7(1), 26. https://doi.org/10.22146/teknosains.32395

Latuamury, B., Parera, L. R., & Marasabessy, H. (2020). Characterizing river baseflow recession using linear reservoir model in Alang Watershed, Central Java, Indonesia. Indonesian Journal of Geography, 52(1). https://doi.org/10.22146/ijg.43565

Latuamury, Bokiraiya, Imlabla, W., Sahusilawane, J., & Marasabessy, H. (2022). Comparing Master Recession Curve Shapes Between Linear and Exponential Reservoir Models. Journal of Geographical Studies, 6(2), 68–72. https://doi.org/10.21523/gcj5.22060202

Latuamury, Bokiraiya, Osok, R. M., Puturuhu, F., & Imlabla, W. N. (2022). Baseflow separation using graphic method of recursive digital filter on Wae Batu Gajah Watershed, Ambon City, Maluku. IOP Conference Series: Earth and Environmental Science, 989(1), 012028. https://doi.org/10.1088/1755-1315/989/1/012028

Lee, G., Shin, Y., & Jung, Y. (2014). Development of web-based RECESS model for estimating baseflow using SWAT. Sustainability (Switzerland), 6(4), 2357–2378. https://doi.org/10.3390/su6042357

Maillet, E. (1905). Essais d’Hydraulique Souterraine et Fluviale. In Hermann Paris (p. 218).

Nurkholis, A., Adji, T. N., Haryono, E., Cahyadi, A., Waskito, W. A., Fathoni, H., Kurniawan, I. A., & Agniy, R. F. (2019). Analysis of Master Recession Curve (MRC) and flood hydrograph components for karstification degree estimation in Kiskendo Cave, Jonggrangan Karst System, Indonesia. IOP Conference Series: Earth and Environmental Science, 256(1). https://doi.org/10.1088/1755-1315/256/1/012011

Rupp, D. E., & Selker, J. S. (2006). On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers. Water Resources Research, 42(12), 1–15. https://doi.org/10.1029/2006WR005080

Şener, A., Yolcubal, İ., & Sanğu, E. (2020). Determination of recharge, storage and flow characteristics of a karst aquifer using multi-method approaches (Kocaeli, Turkey). Hydrogeology Journal, 28(6), 2141–2157. https://doi.org/10.1007/s10040-020-02183-1

Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-17-817-2013

Sujono, J., Shikasho, S., & Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrological Processes, 18(3), 403–413. https://doi.org/10.1002/hyp.1247

Tashie, A., Pavelsky, T., & Band, L. E. (2020). An Empirical Reevaluation of Streamflow Recession Analysis at the Continental Scale. Water Resources Research, 56(1), 1–18. https://doi.org/10.1029/2019WR025448

Tashie, A., Pavelsky, T., & Emanuel, R. E. (2020). Spatial and Temporal Patterns in Baseflow Recession in the Continental United States. Water Resources Research, 56(3), 1–18. https://doi.org/10.1029/2019WR026425



DOI: https://doi.org/10.22146/teknosains.90705

Article Metrics

Abstract views : 213 | views : 96

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Bokiraiya Latuamury et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing