Fabrication of pbs films for air mass filter of solar simulator

https://doi.org/10.22146/teknosains.88846

Isom Hilmi(1), Damar Yoga Kusuma(2*), Hariyadi Soetedjo(3), Qonitatul Hidayah(4), Umi Salamah(5)

(1) Department of Physics, Faculty of Applied Science and Technology, Universitas Ahmad Dahlan
(2) Department of Physics, Faculty of Applied Science and Technology, Universitas Ahmad Dahlan
(3) Department of Physics, Faculty of Applied Science and Technology, Universitas Ahmad Dahlan
(4) Department of Physics, Faculty of Applied Science and Technology, Universitas Ahmad Dahlan
(5) Department of Physics, Faculty of Applied Science and Technology, Universitas Ahmad Dahlan
(*) Corresponding Author

Abstract


The production of solar panels is continuously increasing due to increasing demands at industrial and residential levels. This also leads to an increasing demand for solar simulator testing tools. A solar simulator is a tool to assess a solar panel's performance in lab and industry scales. One of the main components of the solar simulator is the Air Mass Filter (AMF). The primary function of AMF is to remove unwanted wave bands from the solar simulator light source (e.g., Xe arc lamp) so that the filtered spectrum is commensurate to that of solar irradiation. An AMF can be produced by fabricating a thin material layer on a transparent substrate like glass. The film would absorb certain wave bands in different ways. This paper reports the fabrication of the chalcogenide PbS thin films for applying AMF. The thermal evaporation technique is used for the film fabrication. PbS is known for its versatility for applications in different optical devices due to its tailorable optical properties. Different amounts (in grams) of PbS source powders are used to deposit the PbS thin films. The optical properties of the films are then examined using UV-Vis spectroscopy. The distributions of the transmittance intensity of the Xe-arc-lamp light with and without the use of the films as an optical filter are then examined using a solar simulator. From the experiments, the film deposited using a 0.012 g PbS powder source is regarded as the optimum one regarding the transmittance intensity distribution.


Full Text:

PDF


References

Agnese, R., Aralis, T., Aramaki, T., Arnquist, I., Azadbakht, E., Baker, W., Banik, S., Barker, D., Bauer, D., & Binder, T. 2018. Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors. Applied Physics Letters, 113(9).

Bari, D., Wrachien, N., Tagliaferro, R., Brown, T. M., Reale, A., Di Carlo, A., Meneghesso, G., & Cester, A. 2012. Reliability study of dye-sensitized solar cells by means of solar simulator and white LED. Microelectronics Reliability, 52(9-10), 2495-2499.

Bei, L., Dennis, G. I., Miller, H. M., Spaine, T. W., & Carnahan, J. W. 2004. Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques. Progress in Quantum Electronics, 28(2), 67-87.

Burungale, V. V., Devan, R. S., Pawar, S. A., Harale, N. S., Patil, V. L., Rao, V., Ma, Y.-R., Ae, J. E., Kim, J. H., & Patil, P. S. 2016. Chemically synthesized PbS nanoparticulate thin films for a rapid NO2 gas sensor. Materials Science-Poland, 34(1), 204-211.

Codd, D. S., Carlson, A., Rees, J., & Slocum, A. H. 2010. A low cost high flux solar simulator. Solar Energy, 84(12), 2202-2212.

Dini, D., Calvete, M. J., & Hanack, M. 2016. Nonlinear optical materials for the smart filtering of optical radiation. Chemical reviews, 116(22), 13043-13233.

Domínguez, C., Antón, I., & Sala, G. 2008. Solar simulator for concentrator photovoltaic systems. Optics express, 16(19), 14894-14901.

Ekman, B. M., Brooks, G., & Rhamdhani, M. A. 2016. Development of high flux solar simulators for solar thermal research. Energy Technology 2015: Carbon Dioxide Management and Other Technologies, 149-159.

Emery, K. 1986. Solar simulators and I–V measurement methods. Solar cells, 18(3-4), 251-260.

Esen, V., Sağlam, Ş., & Oral, B. 2017. Light sources of solar simulators for photovoltaic devices: A review. Renewable and Sustainable Energy Reviews, 77, 1240-1250.

Günes, S., Fritz, K. P., Neugebauer, H., Sariciftci, N. S., Kumar, S., & Scholes, G. D. 2007. Hybrid solar cells using PbS nanoparticles. Solar Energy Materials and Solar Cells, 91(5), 420-423.

Irwan, Y., Leow, W., Irwanto, M., Amelia, A., Gomesh, N., & Safwati, I. 2015. Indoor test performance of PV panel through water cooling method. Energy Procedia, 79, 604-611.

Jang, S. H., & Shin, M. W. 2010. Fabrication and thermal optimization of LED solar cell simulator. Current applied physics, 10(3), S537-S539.

Koller, D., Ediss, G., Mihaly, L., & Carr, G. 2006. Infrared measurements of possible IR filter materials. International journal of infrared and millimeter waves, 27, 835-846.

Leary, G., Switzer, G., Kuntz, G., & Kaiser, T. 2016. Comparison of xenon lamp-based and led-based solar simulators. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC),

Lee, J. W., Kim, D. Y., Baek, S., Yu, H., & So, F. 2016. Inorganic UV–visible–SWIR broadband photodetector based on monodisperse PbS nanocrystals. Small, 12(10), 1328-1333.

Li, Y., Liu, S., & Shukla, A. 2016. Experimental analysis on use of thermal conductivity enhancers (TCEs) for solar chimney applications with energy storage layer. Energy and buildings, 116, 35-44.

Loh, W., Yegnanarayanan, S., Ram, R. J., & Juodawlkis, P. W. 2014. A nonlinear optoelectronic filter for electronic signal processing. Scientific Reports, 4(1), 3613.

Meng, Q., Wang, Y., & Zhang, L. 2011. Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy, 85(9), 1758-1767.

Petrasch, J., Coray, P., Meier, A., Brack, M., Haeberling, P., Wuillemin, D., & Steinfeld, A. 2007. A novel 50kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps.

Philip, J., Jaykumar, T., Kalyanasundaram, P., & Raj, B. 2003. A tunable optical filter. Measurement Science and Technology, 14(8), 1289.

Popa, A., Lisca, M., Stancu, V., Buda, M., Pentia, E., & Botila, T. 2006. Crystallite size effect in PbS thin films grown on glass substrates by chemical bath deposition. Journal of Optoelectronics and Advanced Materials, 8(1), 43.

Presciutti, A., Asdrubali, F., Marrocchi, A., Broggi, A., Pizzoli, G., & Damiani, A. 2014. Sun simulators: development of an innovative low cost film filter. Sustainability, 6(10), 6830-6846.

Riedel, N., Pratt, L., Edler, A., & Haas, F. 2015. Effects of a neutral density filter in measuring low-light performance with a pulsed light Xe arc solar simulator. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC),

Roberts, T., Mosbrucker, G., Petersen, J., & Osman, M. 2014. Flexible solar simulator for renewable energy instruction laboratory. 2014 IEEE Conference on Technologies for Sustainability (SusTech),

Rohom, A. B., Londhe, P. U., Jadhav, P. R., Bhand, G. R., & Chaure, N. B. 2017. Studies on chemically synthesized PbS thin films for IR detector application. Journal of Materials Science: Materials in Electronics, 28, 17107-17113.

Ross, B., & Bickler, D. B. 1963. Solar energy measurement techniques (Vol. 62). Flight Accessories Laboratory, Aeronautical Systems Division, Air Force.

Sahadevan, J., Muthu, S. E., Kulathuraan, K., Arumugam, S., Kim, I., Pratha, G. B. S., & Sivaprakash, P. 2022. Structural, morphology and optical properties of PbS (Lead Sulfide) thin film. Materials Today: Proceedings, 64, 1849-1853.

Sayre, R. M., & Dowdy, J. C. 2010. The FDA proposed solar simulator versus sunlight. Photochemical & Photobiological Sciences, 9, 535-539.



DOI: https://doi.org/10.22146/teknosains.88846

Article Metrics

Abstract views : 245 | views : 147

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Isom Hilmi et al

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing