Akurasi dimensi produk filamen 3d printing berbahan polipropilen menggunakan mesin ekstrusi

https://doi.org/10.22146/teknosains.63878

Mochamad Edoward Ramadhan(1), Mahros Darsin(2*), Sains Ilham Akbar(3), Danang Yudistiro(4)

(1) Fakultas Teknik, Universitas Jember
(2) Fakultas Teknik, Universitas Jember
(3) Fakultas Teknik, Universitas Jember
(4) Fakultas Teknik, Universitas Jember
(*) Corresponding Author

Abstract


Additive manufacturing (AM) has been trending topic in industrial revolution 4.0. One technique and the most widely used AM is fused deposition modeling (FDM), which uses a melted filament and deposited it layer by layer. The common filaments used are made of PLA, PP, and ABS, which are available at the online market with variety of prices depend on the quality. It is an advantage if we can make these filaments. In filament manufacturing, the dimensional accuracy is one of the most important factors to comply with the existing 3D printers. The aim of this research is to fabricate a filament made of PP, then assessed the quality based on the accuaray of the targeted diameter of 1.75 mm. The manufacturing process used a self-made plastic extrusion machine. Variations were made on three variables with three levels each. There are (i) heater band temperature with a minimum and maximum range (150/170 oC, 155/175 oC and 160/180 oC), (ii) winding speed (13 mm/s, 16 mm/,s and 19 mm/s), and (iii) roll distance to the nozzle set point (200 mm, 500 mm and 700 mm). Taguchi L9 design was used to design the experiments and analysis.Minitab 19 was employed to find the S/N ratio and analysis the variance (ANOVA). The results of the analysis state that two parameters have a significant effect on the dimensions of the filament, i.e. temperature and roll distance to the nozzle, while, the winding speed has no dominat effect. The best accuracy of filaments diameter was achieved when applying a combination of temperature (160/180 ⁰C), the distance between the nozzle to the roll of 700 mm, and winding speed of 13 mm/s.


Keywords


Dimensional accuracy; FDM 3D printing; Filament design; Taguchi

Full Text:

PDF


References

Amin, M. S., Darsin, M., & Sanata, A. (2020). Optimasi Kekuatan Tarik Proses Electroplating SS400 Menggunakan Metode Taguchi. Jurnal Riset Teknologi Industri, 14(1), 54. https://doi.org/10.26578/jrti.v14i1.5839

Andriyansyah, D., Herianto, & Purfaji. (2018). Optimasi Parameter Proses 3D Printing Terhadap Kuat Tarik Filamen PLA Menggunakan Metode Taguchi. Seminar Nasional Pendidikan Teknik Otomotif, ISSN : 2338-0284, 61–68.

Aris, M. A. ‘Ilman Z., Mat, S., Sam, M. S., Ramli, F. R., Alkahari, M. R., & Kudus, S. I. A. (2020). Design and development of 3D printer filament extruder. Proceedings of Mechanical Engineering Research Day 2020, Pp. 293-294, December 2020, 293–294. Design and development of 3D printer filament extruder

Budiyantoro, C., Rochardjo, H. S. B., & Nugroho, G. (2021). Design , Manufacture , and Performance Testing of Extrusion–Pultrusion Machine for Fiber-Reinforced Thermoplastic Pellet Production. Machines, 9(42), 3–17. https://doi.org/doi.org/10.3390/machines9020042

Darsin, M., Pasang, T., & Chen, Z. (2017). Performance of TiAlN PVD Coated Carbide Drill when Drilling Titanium 6246 Alloy. MATEC Web of Conferences, 109. https://doi.org/10.1051/matecconf/201710902001

Darsin, Mahros, Mahardika, N. A., Jatisukamto, G., Edoward, M., Fachri, B. A., & Hussin, M. S. (2021). Coalesce Research Group Journal of 3D Printing and Additive Manufacturing Effect of 3D Printing Parameters on Dimensional Accuracy Using eSteel Filaments. 1(1), 1–7.

Darsin, Mahros, Pasang, T., & Chen, Z. (2018). Forces Perspective of Drillability of Titanium Alloy 6Al-2Sn-4Zr-6Mo. Journal of Energy, Mechanical, Material and Manufacturing Engineering, 3(1), 23. https://doi.org/10.22219/jemmme.v3i1.5825

Garsiman, G. (2018). Studi Rancang Bangun Mesin Single Screw Extruder Portable Untuk Aplikasi Produksi Filament 3D Printer [Institut Teknologi Sepuluh Nopember]. https://repository.its.ac.id/53053/1/02511440000060_undergraduate-theses.pdf

Hartono, M. (2012). Meningkatkan Mutu Produk Plastik Dengan Metode Taguchi. Jurnal Teknik Industri, 13(1), 93. https://doi.org/10.22219/jtiumm.vol13.no1.93-100

Herianto, Atsani, S. I., & Mastrisiswadi, H. (2020). Recycled Polypropylene Filament for 3D Printer: Extrusion Process Parameter Optimization. IOP Conference Series: Materials Science and Engineering, 722(1). https://doi.org/10.1088/1757-899X/722/1/012022

Ikhsanto, L. N., & Zainuddin. (2020). Analisa Kekuatan Bending Filamen ABS dan PLA pada Hasil 3D Printer dengan Variasi Suhu Nozzle. Media Mesin: Jurnal Imiah Teknik Mesin, 21(1), 9–17.

Islam, M. N., & Pramanik, A. (2016). Comparison of Design of Experiments via Traditional and Taguchi Method. Journal of Advanced Manufacturing Systems, 15(3), 151–160. https://doi.org/10.1142/S0219686716500116

Ivan WCS, I. M., Darsin, M., Jatisukamto, G., & Hussin, M. S. (2021). Design of Portable Cartesian 3D Printer Using Arduino Mega 2560. Journal 3D Printing and Additive Manufacturing, 1(1), 1–9. https://crgjournals.com/3dprinting/articles/design-of-portable-cartesian-3d-printer-using-arduino-mega-2560lt

Jeffrey, Utama, D. W., & Soeharsono. (2016). Rancang bangun kontruksi dan sistem gerak sumbu pada mesin. POROS, 14(No 2), 99–106.

Khanna, N., Agrawal, C., Shah, P., Larsen, J. Ø., & Phadnis, V. A. (2019). Eco-friendly machining using retrofitted cryogenic machining system. Materials Today: Proceedings, 18(March), 2806–2813. https://doi.org/10.1016/j.matpr.2019.07.147

Krishnaiah, K., & Shahabudeen, P. (2012). Applied Design of Experiments and Taguchi Method. PHI Learning Private Limited.

Liu, W., Zhou, J., Ma, Y., Wang, J., & Xu, J. (2018). Fabrication of PLA Filaments and its Printable Performance. IOP Conference Series: Materials Science and Engineering, 275(1). https://doi.org/10.1088/1757-899X/275/1/012033

Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2021). 3D printing filament as a second life of waste plastics—a review. Environmental Science and Pollution Research, 28(10), 12321–12333. https://doi.org/10.1007/s11356-020-10657-8

Mirón, V., Ferrándiz, S., Juárez, D., & Mengual, A. (2017). Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manufacturing, 13, 888–894. https://doi.org/10.1016/j.promfg.2017.09.151

Nugroho, A., Mahardika, A., & Budiyantoro, C. (2019). Improving the tensile properties of 3D printed PLA by optimizing the processing parameter. JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering), 4(1), 29–36.

Patil, A., Patil, B., Potwade, R., Shinde, A., & Shinde, R. (2017). Design and Development of FDM Based Portable 3D Printer. International Journal of Scientific & Engineering Research, 8(3), 116–120.

Putri, N. D. S., Mardiyati, Suratman, R., & Steven. (2017). Pembuatan Filamen Komposit Polypropylene High Impact Berpenguat Serat Rami Dengan Mesin Ekstrusi Sederhana. Seminar Nasional Metalurgi Dan Material (SENAMM), November, 9–15.

Rahman, H., Saputra, I., Utama, G., & Setyoadi, Y. (2019). Pengaruh Temperatur Nozzle dan Base Plate Pada Material PLA Terhadap Nilai Masa Jenis dan Kekasaran Permukaan Produk Pada Mesin Leapfrog Creatr 3D Printer. Jurnal Teknologi Dan Riset Terapan (JATRA), 1(1 SE-Research Articles), 1–8.

Ravichandran, P., Anbu, C., Poornachandran, R., Shenbagarajan, M., & Yaswahnthan, K. S. (2020). Design and development of 3d printer filament extruder for material reuse. International Journal of Scientific and Technology Research, 9(1), 3771–3775.

Rosli, N. A., Alkahari, M. R., Ramli, F. R., Maidin, S., Sudin, M. N., Subramoniam, S., & Furumoto, T. (2018). Design and development of a low-cost 3D metal printer. Journal of Mechanical Engineering Research and Developments, 41(3), 47–54. https://doi.org/10.26480/jmerd.03.2018.47.54

Setiawan, A. (2017). Pengaruh Parameter Proses Ekstrusi 3D Printer Terhadap Sifat Mekanis Cetak Komponen Berbahan Filament PLA (Poly Lactide Acid). Jurnal Teknika STTKD. ISSN : 2460-1608, 4(2), 20–27.

Shaik, Y. P., Schuster, J., & Shaik, A. (2021). A Scientific Review on Various Pellet Extruders Used in 3D Printing FDM Processes. OALib, 08(08), 1–19. https://doi.org/10.4236/oalib.1107698

Tontowi, A. E., & Setiawan, A. (2016). Mechanical Strength of [ HA / Bioplastic / Sericin ] Composite Part Printed by Bioprinter. The 2016 Conference on Fundamental and Applied Science for Advanced Technology (ConFAST 2016), 020035(978-0-7354-1403-7/$30.00). https://doi.org/10.1063/1.4953960



DOI: https://doi.org/10.22146/teknosains.63878

Article Metrics

Abstract views : 3279 | views : 3546

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Mochamad Edoward Ramadhan, Mahros Darsin, Sains Ilham Akbar, Danang Yudistiro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing