Characterization of β-tricalcium phosphate derived from green mussel shells (Molarity variation)
Hillary Aurenne Santoso(1), Eddy Eddy(2*), Manuel Romario Kesnatri(3), Tansza Setiana Putri(4), Jackson Dipankara(5), Astri Rinanti Nugroho(6), Bang Le Thi(7)
(1) Faculty of Dentistry, Universitas Trisakti, Jakarta
(2) Department of Dental Materials, Faculty of Dentistry, Universitas Trisakti, Jakarta
(3) Faculty of Dentistry, Universitas Trisakti, Jakarta
(4) Department of Dental Materials, Faculty of Dentistry, Universitas Trisakti, Jakarta
(5) Department of Oral Maxillofacial Surgery, Faculty of Dentistry, Universitas Trisakti, Jakarta
(6) Department of Environmental Engineering, Faculty of Landscape Architecture and Environmental Technology, Universitas Trisakti, Jakarta
(7) School of materials science and engineering, Hanoi University of Science and Technology, Hanoi
(*) Corresponding Author
Abstract
β-Tricalcium phosphate (β-TCP) is a widely used bioceramic material. In dentistry, it is commonly used as bone graft material. β-TCP is osteoconductive, bioresorbable, bioactive, and has biocompatibility properties. This study aims to evaluate the optimum molarity of CaO and H3PO4 to synthesize β-TCP from a natural source (Perna viridis linn). This is laboratory experimental research conducted by reacting calcium compounds from green mussel shells and phosphoric acid using the dissolution precipitation method with variations in molarity ratio. X-ray diffraction (XRD), scanning electron microscope (SEM), and fourier transform infrared (FTIR) were used to identify the characteristics of β-TCP synthesized from green mussel shells. The XRD chart pattern showed the formation of peaks identical to the β-TCP (Sigma-Aldrich). However, formation of whitlockite phase was also seen in the results. FTIR results showed that phosphate, hydroxyl, and carbonyl groups were shown on the graph and could be identified as β-TCP. SEM characterization showed that the sample consisted of small particles irregularly shaped to form like aggregates. β-TCP synthesized using molarity ratio of 0.6M CaO: 0.4M H3PO4 had characteristics resembling β-TCP (Sigma-Aldrich).
Keywords
Full Text:
7. EddyReferences
1. Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog
Biomater. 2019; 8: 223-237. doi: 10.1007/s40204-019-00125-z.
2. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair:
A review. Bioact Mater. 2017; 2(4): 224-247. doi: 10.1016/j.bioactmat.2017.05.007
3. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013; 5(1):
125–127. doi: 10.4103/0975-7406.113312
4. Eddy. Kalsium sulfat sebagai bone graft. JKGT. 2021; 3(2): 4–5.
doi: 10.25105/jkgt.v3i2.12612
5. Hillary A.S, Eddy. Potensi penggunaan β-tricalcium phosphate sebagai bahan
substiusi tulang JKGT. 2023; 5(1): 54-57. doi :10.25105/jkgt.v5i1.16759
6. Suprianto K, Nilam C D. Hidroksiapatit dari cangkang telur sebagai bone graft yang
potensial dalam terapi periodontal. Clin Dent J. 2019; 5(3): 76–87. doi: 10.22146/
mkgk.65729
7. Kementerian Kelautan dan Perikanan (KKP) RI. Data Produksi Kelautan dan Perikanan
Indonesia (Statistik Sektoral). statistik.kkp.go.id. 2020.
8. Permatasari HA, Sari M, Aminatun, Suciati T, Dahlan K, Yusuf Y. Nano-carbonated
hydroxyapatite precipitation from abalone shell (Haliotis asinina) waste as the bioceramics
candidate for bone tissue engineering. Nanomater Nanotechnol. 2021; 11: 1–9.
doi: 10.1177/18479804211032851
9. Ningsih RP, Wahyuni N, Destiarti L. Sintesis hidroksiapatit dari cangkang kerang kepah
(Polymesoda erosa) dengan variasi waktu pengadukan. J Kim Khatulistiwa. 2014; 3(1):
22–26.
10. Cahyaningrum SE, Herdyastuty N, Devina B, Supangat D. Synthesis and characterization
of hydroxyapatite powder by wet precipitation method. IOP Conf Ser Mater Sci Eng. 2018;
299(1): 12039–12043. doi: 10.1088/1757-899X/299/1/012039
11. Fadli A, Reni Yenti S, Zultiniar Z, Fifiyana R. Isotherm study on the adsorption of
cadmium (II) onto hydroxyapatite from sea shells synthesized by low temperature
hydrothermal method. In: Proceeding of the First International Conference on
Technology, Innovation and Society. ITP Press; 2016. 45–52. doi: 10.21063/ICTIS.2016.1008
12. Pangestu TO, Damayanti SF, Santi SS, Muljani S. Sintesis dan karakterisasi kalsium
fosfat dari cangkang bekicot dengan metode presipitasi. CHEESA Chem Eng Res Artic.
2021; 4(2): 82–90. doi: 10.25273/cheesa.v4i2.8931.82-90
13. Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic bone substitutes for periodontal
and bone regeneration in dentistry: Current status and prospects. Materials (Basel). 2021;
14(5): 1–28. doi: 10.3390/ma14051096
14. Angelis NDe, Benedicenti S, Zekiy A, Amaroli A. Current trends in bone augmentation
techniques and dental implantology : an editorial overview. J Clin Med. 2022; 11: 1–2.
doi: 10.3390/jcm11154348
15. Liemawan AE, Tavio, Raka IGP. Pemanfaatan limbah kerang hijau sebagai bahan campuran
kadar optimum agregat halus pada beton mix design dengan metode substitusi. J Tek ITS.
2015; 4(1): F128–133. doi: 10.12962/j23373539.v4i1.8927
16. Wardhani S, Miralda S, Darjito, Danar P. Pengaruh temperatur sintesis precipitated
calcium carbonate (PCC) dengan modifier terhadap ukuran dan jenis kristal. J Integr
Proses. 2021; 10(1): 1–6.
17. Gavryushkin PN, Belonoshko AB, Sagatov N, Sagatova D, Zhitova E, Krzhizhanovskaya
MG, et al. Metastable structures of CaCO3and their role in transformation of calcite to
aragonite and postaragonite. Cryst Growth Des. 2021; 21(1): 65–74.
doi: 10.1021/acs.cgd.0c00589
18. Ismail R, Fitriyana DF, Santosa YI, Nugroho S, Hakim AJ, Al Mulqi MS, et al. The potential
use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs
in biomaterials. J Cryst Growth. 2021; 572(126282): 1–8. doi: 10.1016/j.jcrysgro.2021.126282
19. Fadhilah R, Kurniawan RA, Icha MM. Synthesis of hydroxyapatit from ale-ale (Meretrix Spp)
shell as bone graft material. Majalah Ilmiah Al Ribaath, Universitas Muhammadiyah
Pontianak. 2015; 12(1): 44–60. doi: 10.29406/br.v12i1.79
20. Afriani F, Mustari, Tiandho Y. Pengaruh lama pemanasan terhadap karakteristik kristal
kalsium dari limbah cangkang kerang. J EduMatSains. 2018; 2(2): 189–200.
doi: 10.33541/edumatsains.v2i2.606
21. Hariyanto A, Sari VK, Pujiastuti C. Kinetika reaksi pembentukan kalsium fosfat dari asam
fosfat dan cangkang kerang darah. ChemPro. 2020; 1(02): 32–38.
doi: 10.33005/chempro.v1i2.48
22. Wahyusi KN, et al. Precipitation method in calcium phosphat synthesis from blood
clamshells (Anadara Granosa). J. Phys.: Conf. Ser. 2021; 1-5.
doi: 10.1088/1742-6596/1899/1/012057
23. Tavares D dos S, Castro LDO, Soares GD de A, Alves GG, Granjeiro JM. Synthesis and
cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J Appl
Oral Sci. 2013; 21(1): 37–42. doi: 10.1590/1678-7757201302138
24. Wulandari AD, Yulkifli. Studi awal rancang bangun colorimeter sebagai pendeteksi pada
pewarna makanan menggunakan sensor photodioda. Pillar Phys. 2018; 11(2): 81–87.
25. Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis
and properties. Acta Biomater. 2020; 113: 23–41. doi: 10.1016/j.actbio.2020.06.022
26. Rahayu S, Kurniawidi DW, Gani A. Pemanfaatan limbah cangkang kerang mutiara (Pinctada Maxima) sebagai sumber hidroksiapatit. J Pendidik Fis dan Teknol.
2018; 4(2): 226–231. doi: 10.29303/jpft.v4i2.839
27. Jang HL, Lee HK, Jin K, Ahn HY, Lee HE, Nam KT. Phase transformation from hydroxyapatite
to the secondary bone mineral, whitlockite. J Mater Chem B. 2015; 3(7): 1342–1349.
doi: 10.1039/C4TB01793E
28. Guo X, Liu X, Gao H, Shi X, Zhao N, Wang Y. Hydrothermal growth of whitlockite coating
on β-tricalcium phosphate surfaces for enhancing bone repair potential. J Mater Sci Technol. 2018; 34(6): 1054–1059. doi: 10.1016/j.jmst.2017.07.009
29. Qi C, Zhu YJ, Chen F, Wu J. Porous microspheres of magnesium whitlockite and
amorphous calcium magnesium phosphate: microwave-assisted rapid synthesis using
creatine phosphate, and application in drug delivery. J Mater Chem B. 2015; 3(39): 7775–
7786. doi: 10.1039/C5TB01106J
30. Kwon SY, Shim JH, Kim YH, Lim CS, An SB, Han I. Efficacy for whitlockite for augmenting
spinal fusion. Int J Mol Sci. 2021; 22(12875): 1–14. doi: 10.3390/ijms222312875
31. Zhou D, Qi C, Chen YX, Zhu YJ, Sun TW, Chen F, et al. Comparative study of porous
hydroxyapatite/chitosan and whitlockite/ chitosan scaffolds for bone regeneration in
calvarial defects. Int J Nanomedicine. 2017; 12: 2673–2687. doi: 10.2147/IJN.S131251
32. Avifah LN. Optimasi pembuatan β-Tricalcium phosphate berbasis cangkang telur ayam ras
dengan variasi molaritas. Institut Pertanian Bogor; 2014.
33. Hardyanti. Sintesis dan karakterisasi β-tricalcium phosphate dari cangkang telur
ayam dengan variasi suhu sintering. J Biofisika. 2013; 8(2): 42–48.
34. Ruiz-Aguilar C, Olivares-Pinto U, Aguilar-Reyes EA, López-Juárez R, Alfonso I.
Characterization of β-tricalcium phosphate powders synthesized by sol-gel and mechanosynthesis. Bol la Soc Esp Ceram y Vidr. 2018; 57(5): 213–220.
doi: 10.1016/j.bsecv.2018.04.004
35. Akbar F. Sintesis Ca2P2O7 dari limbah kerang sebagai bahan baku limbah cangkang
kerang dengan metode solvothermal. J Fis dan Apl. 2019; 15(3): 110.
doi: 10.12962/j24604682.v15i3.4707
36. Buasri A, Chaiyut N, Loryuenyong V, Worawanitchaphong P, Trongyong S. Calcium
oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous
catalyst for biodiesel production. Sci World J. 2013; 1–7. doi: 10.1155/2013/460923
37. Grigoraviciute-Puroniene I, Tsuru K, Garskaite E, Stankeviciute Z, Beganskiene A, Ishikawa
K, et al. A novel wet polymeric precipitation synthesis method for monophasic β-TCP. Adv
Powder Technol. 2017; 28(9): 2325–2331. doi: 10.1016/j.apt.2017.06.014
DOI: https://doi.org/10.22146/majkedgiind.89690
Article Metrics
Abstract views : 748 | views : 403Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.