Differences in Candida Albicans hydrophobicity and biofilm formation between thermoplastic nylon and polyether-ether-ketone denture base materials
Titik Ismiyati(1*)
(1) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada University, Yogyakarta
(*) Corresponding Author
Abstract
Polyetheretherketone (PEEK) and thermoplastics nylon are extensively composed as an alternative material for removable denture base. The primary difference between the two materials is associated with water absorption properties. The two materials interact with saliva and microorganisms during application in the oral cavity. Candida is predominantly reported in the cavity. The microorganism is distinguished by its hydrophobicity and ability to form biofilms. The objective of this study was to determine the differences between thermoplastic nylon and polyether-ether-ketone as removable denture materials in terms of hydrophobicity and Candida albicans biofilms. It is a laboratory experiment using 20 5 x 2 mm samples for the hydrophobicity test and Candida albicans biofilm. The hydrophobicity test was performed by determining the contact angle with a Goniometer and the WinDrop++ software. The biofilm test samples were divided into 4 groups, encompassing PEG 5% (negative control), PEEK treatment, thermoplastics nylon, and 0.12% chlorhexidine (control positive). The microdilution method was employed to examine biofilm formation. The results of the study were interpreted, and the data were analyzed by employing the t test. The research discovered significant differences in biofilm formation, large contact angle on PEEK and thermoplastics nylon (p < 0.05). Biofilm formation on thermoplastics is significantly larger than PEEK (p < 0.05). In conclusion, the contact angles of PEEK and thermoplastic nylon are incorporated in the partially wetted. Polyetheretherketone is involved in the non-producers of biofilms while thermoplastic nylon is categorized in of weak biofilm formers.
Keywords
Full Text:
PDFReferences
1. Loney RW. Removable Partial Denture Manual. Dalhousie University; 2011: 1-71
2. Ichikawa T, Kurahashi K, Liu L, Matsuda T, Ishida Y. use of a polyetheretherketone clasp
retainer for removable partial denture: a case report. Dent J (Basel). 2019; 7(1):4.
doi: 10.3390/dj7010004.
3. Takabayashi Y. Characteristic of denture thermoplastic resins for non-metal clasp
dentures. Dent Mater J. 2010; 29(4): 353-361. doi: 10.4012/dmj.2009-114
4. Kaira LS, Dayakara HR, Singh R. Flexible denture for partially edentulous arches – a
case report. J Dentofac Sci. 2012; 1(2): 39-42.
5. Abhay PN, Karishma S. Comparative evaluation of impact and flexural strength of
four commercially available flexible denture base materials: an in vitro study. J Indian
Prosdhodont Soc. 2013; (4): 499-508. doi: 10.1007/s13191-012-0203-0.
6. Sharma P, Garg S, Kalra NM. Effect of denture cleansers on surface roughness and flexural
strength of heat cure denture base resin-an in vitro study. J Clin Diagn Res. 2017; 11(8):
ZC94-ZC97. doi: 10.7860/JCDR/2017/27307.10483
7. Kurtz SM, Chapter 1 - An Overview of PEEK Biomaterials, Editor(s): Steven M.
Kurtz, In Plastics Design Library, in: PEEK Biomaterials Handbook. William Andrew
Publishing, 2012: 1-7. doi: 10.1016/B978-1-4377-4463-7.10001-6
8. Schwitalla A, Müller WD. PEEK dental implants: a review of the literature. J Oral
Implantol. 2013; 39(6): 743-749. doi: 10.1563/AAID-JOI-D-11-00002.
9. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK)
in oral implantology and prosthodontics. J Prosthodont Res. 2016; 60(1): 12–19.
doi: 10.1016/j.jpor.2015.10.001
10. Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry.
International Dental Research. 2018; 8(2): 84–92. doi: 10.1016/j.jpor.2015.10.001
11. Liebermann A, Wimmer T, Schmidlin PR, Scherer H, Löffler P, Roos M, Stawarczyk B. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J Prosthet Dent.
2016; 115(3): 321-328.e2. doi: 10.1016/j.prosdent.2015.09.004.
12. Benakatti VB, Sajjanar JA, Acharya A. Polyetheretherketone (PEEK) in dentistry.
Journal of Clinical and Diagnostic Research. 2019; 13(8): 10–12. doi: 10.7860/JCDR/2019/41965.13103
13. Ortega-Martínez J, Farré-Lladós M, Cano-Batalla J, Cabratosa-Termes J. Polyetheretherketone (PEEK) as a medical and dental material. A literature review. Medical Research Archives. 2017; 5(4). doi: 010.18103/mra.v5i4.1209
14. Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The role of polyether ether ketone
(peek) in dentistry - a review. J Med Life. 2019; 12(1): 5-9. doi: 10.25122/jml-2019-0003.
15. Pai SA, Kumari S, Umamaheswari B, Jyothi M, Lakshmi CBS. Polyetheretherketone in prosthodontics – A review. Journal of Advanced Clinical and Research Insights. 2019; 6(1). 24-26. doi: 10.15713/ins.jcri.252.
16. Drelich J, Marmur A. Physics and applications of superhydrophobic and superhydrophilic
surfaces and coatings. Surface Innovations. 2014; 2(4): 211–227. doi: 10.1680/si.13.00017
17. Syakur A, Novia I, Sarjiya S, Berahim B. Pengaruh penambahan silika terhadap kontak hidropobik dan karakteristik arus bocor permukaan bahan resin epoksi. Teknik. 2012;
32(3): 198 – 202.
18. Berahim H, Sirait KT, Soesianto F, Tumiran T. A new performance of RTV epoxy resin insulation material in tropical climate. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No.03CH37417). 2003; 2: 607-610.
doi: 10.1109/ICPADM.2003.1218490.
19. Wady AF, Machado AL, Zucolotto V, Zamperini CA, Berni E, Vergani CE. Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J Appl Microbiol. 2012; 112(6): 1163-1172. doi: 10.1111/j.1365-2672.2012.05293.x
20. Liu T, Xu C, Hong L, et al. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces. J Prosthet Dent. 2017; 118(6): 765770. doi: 10.1016/j.prosdent.2017.01.003.
21. Putri MH, Herijulianti E, Nurjanah. Ilmu pencegahan penyakit jaringan keras dan
jaringan pendukung gigi. Jakarta: EGC; 2010. 56-58, 71.
22. Marsh P, Martin MV. Oral Microbiology 4th ed. Heinemann: Wright; 2009. 60-70.
23. Fatmawati DWA. Hubungan biofilm Streptococcus Mutans terhadap resiko
terjadinya karies gigi. STOMATOGNATIC - Jurnal Kedokteran Gigi. 2011; 8 (3): 127-130.
24. Budtz-Budtz JE. Sequelae caused by wearing complete denture, dalam Zarb GA, Bolender
CL. Prostodontic treatment for edentulous patients, complete denture and implantsupported
protheses. 13 th ed. St Louis: Mosby Inc.; 2004. 34-50.
25. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular
mechanisms. Microbes Infect. 2016; 18(5): 310-321. doi: 10.1016/j.micinf.2016.01.002.
26. Gupta N, Haque A, Lattif AA, Narayan RP, Mukhopadhyay G, Prasad R. Epidemiology and molecular typing of Candida isolates from burn patients. Mycopathologia. 2004; 158(4):
397-405. doi: 10.1007/s11046-004-1820-x
27. Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog D. 2016;
74(4): 1-13. doi: 10.1093/femspd/ftw018
28. Crouzet M, Senechal CL, Brözel VS, Costaglioli P, Barthe C, Bonneu M, Garbay B, Vilain S.
Exploring early steps in biofilm formation: setup of an experimental system for molecular studies. BMC Microbiology. 2014; 14(1): 23. doi:10.1186/s12866-014-0253-z
29. Lewandowski Z, Beyenal H. Fundamental of biofilm research, 2nd. USA: CRC: Press;
2014. 31.
30. Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS. Scientific basis for the therapeutic
use of Cymbopogon citratus, stapf (Lemon grass). J Adv Pharm Technol Res. 2011; 2(1):
3–8. doi: 10.4103/2231-4040.79796
31. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004; 72(10): 6023-6031. doi: 10.1128/IAI.72.10.6023-6031.2004
32. Kırmusaoğlu S. The methods for detection of biofilm and screening antibiofilm activity of agents. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. London: IntechOpen. 2019. doi: 10.5772/intechopen.84411
33. Bürgers R, Hahnel S, Reichert TE, Rosentritt M, Behr M, Gerlach T, Handel G, Gosau M.
Adhesion of Candida albicans to various dental implant surfaces and the influence of salivary pellicle proteins. Acta Biomater. 2010; 6(6): 2307-2313. doi: 10.1016/j.actbio.2009.11.003.
34. Li J, Hirota K, Goto T, Yumoto H, Miyake Y, Ichikawa T. Biofilm formation of Candida
albicans on implant overdenture materials and its removal. J Dent. 2012; 40(8): 686-692.
doi: 10.1016/j.jdent.2012.04.026.
DOI: https://doi.org/10.22146/majkedgiind.79300
Article Metrics
Abstract views : 1098 | views : 801Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.