Pengaruh komposisi beberapa glass fiber non dental terhadap kelarutan komponen fiber reinforced composites

https://doi.org/10.22146/majkedgiind.11249

Ariyani Faizah(1*), W. Widjijono(2), N Nuryono(3)

(1) Fakultas Kedokteran Gigi, Universitas Muhammadiyah Surakarta, Surakarta, Jawa Tengah, Indonesia
(2) Departemen Biomaterial, Fakultas Kedokteran Gigi, Universitas Gajdah Mada, Yogyakarta, Indonesia
(3) Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


The effect of composition glass fiber non dental on water solubility of fiber reinforced composites. E glass fiber dental is one of the most used dental fibers in several applications in the dental  field. However, the available of E glass fiber dental in Indonesia is very limited. A variety of types of non-dental glass fiber material is easily found as the materials engineering. The purpose of the study was to evaluate the effect of composition non dental glass fiber on the component solubility of FRC. The materials used in the research was E glass fiber dental (Fiber splint, Polydentia SA, Switzerland), composition A non-dental glass fiber (LT, China), composition B (CMAX, China), composition C (HJ, China), flowable composite (Charmfill Flow, Denkist, Korea) and silane coupling agent (Monobond S, Ivoclair Vivadent, Liechtenstein). The subject was divided into 4 groups. Component solubility test was based on the ISO 4049. The result was then analyzed with one way ANOVA (α=0,05). The result of the research showed that on the average percentage of the solubility (%), the lowest was on the group of E glass fiber dental (0.476±0.03) and the highest was on the non dental glass fiber C (0.600±0.01). The result of the one way ANOVA test showed a significant difference between the compositiom fiber on the component solubility. The conclusion the research was that low content of Na2O K2O, CaO and MgO decreased the component solubility of FRC.


ABSTRAK

E glass fiber dental adalah fiber yang sering digunakan di kedokteran gigi. Ketersediaan E glass fiber di Indonesia masih sangat terbatas. Berbagai jenis bahan glass fiber non dental banyak ditemukan dipasaran sebagai material engeenering dengan harga yang relatif murah sehingga diharapkan dapat digunakan sebagai alternatif pengganti E glass fiber dental. Komposisi glass fiber non dental hampir sama dengan E glass fiber dental. Komposisi berpengaruh terhadap sifat mekanis dan sifat-sifat kimia fiber. Komposisi glass fiber seperti Na2O dan K2O akan meningkatkan ketahanan terhadapap air. Tujuan dari penelitian ini adalah mengetahui pengaruh komposisi glass fiber non dental terhadap kelarutan komponen. Bahan yang digunakan dalam penelitian ini adalah E glass fiber dental (Fiber-splint, Polydentia SA, Switzerland), glass fiber non dental komposisi A (LT, China), komposisi B (CMAX, China), komposisi C (HJ, China), flowable komposit (CharmFill Flow, Denkist, Korea) dan silane coupling agent (Monobond S, Ivoclar Vivadent, Liechtenstein). Subjek dibagi dalam 4 kelompok untuk dilakukan uji kelarutan berdasarkan ISO 4049. Hasil yang diperoleh dianalisis menggunakan ANAVA satu jalur (a = 0,05). Hasil penelitian menunjukkan rerata kelarutan komponen (%) yang terendah pada kelompok E-glass fiber dental (0,476±0,03) dan hasil tertinggi pada glass fiber non dental C (0,600±0,01). Hasil uji Anava satu jalur menunjukkan perbedaan yang bermakna antara komposisi fiber pada kelarutan komponen (p<0,05). Kesimpulan penelitian adalah komposisi Na2O dan K2O serta CaO dan MgO yang rendah dapat menurunkan sifat kelarutan komponen dari fiber reinforced composites.



Keywords


fiber glass non dental; component solubility; fiber composition

Full Text:

PDF


References

Rondon N. Edentulism: causes and consequences of tooth loss. America’s Tooth Fairy; 2014. 1 – 7. 2. Gupta S, Nikhil V, Gupta S, Verma M. Conservative bridge with natural tooth pontic: a case report. Int. Journal Clinical Dental Science. 2011; 2(2): 58 – 63. 3. Maghrabi ANA. Reinforcement of fiber reinforced composites crowns with variant margin design. Pakistan Oral and Dental Journal. 2010; 30(1): 264 – 268. 4. Mohan S, Gurtu A, Singhal A, Guha C. Fiber reinforced composites: a review and case report. Journal of Dental Science & Oral Rehabilitation. 2012: 45 – 47. 5. Khan AS, Azam MT, Khan M, Mian SA, Rahman IU. An update on glass fiber dental restorative composites: a systematic review. Material Sci and Eng. 2015; C.47: 26 – 39. 6. Tologlu N, Bayrak S, Tunc Es. Different clinical applications of bondable reinforcement ribbond in pediatric dentistry. European Journal of Dentistry. 2009; 9: 329 – 333. 7. Khetarpal A, Talwar S, Verma M. Single visit rehabilitation with anterior fiber reinforced resin composite bridges: a review. Indian Journal of Applied Research. 2013; 3(2): 287 – 288. 8. Garoushi S, Valittu PK. Fiber reinforced composites in fixed partial dentures. Libyan Journal of Medicine. 2006; 1(1): 73 – 81. 9. Fonseca RB, Paula MS, Favarao ZN, Kasuya AVB, Almaida LN, Mendes GAM, Carlo HL. Reinforcement of dental methachrylate with glass fiber after heated silane application. Biomed Research International; 2014. 1 – 4. 10. Mustafa AA, Matinlinna JP. Materials in dentistry dalam Matinlinna JP Handbook of Oral Biomaterials. Pan Stanford Publishing: Singapore; 2014. 125 – 130. 11. Sharafeddin F, Alavi AA, Talei Z. Flexural strength of glass and polyethylene fiber combined with three different composites. Journal Dental Shiraz univ, Med. Sci. 2013; 14(1): 13 – 19. 12. Tuakta C. Use of fiber reinforced polymer composites in bridge structures, the departement of civil and environmental engineering. Massachusetts Institute of Technology; 2005. 8 – 16. 13. Zhang M, Matinlinna JP. E-glass fiber reinforced composites in dental application. Silicon; 2012. 1 – 5. 14. Junior AA, Lopez, MW, Gaspar GS, Braz R. Comparative study of flexural strength and elasticity modulus in two types of direct fiber reinforced system. Brazilian Oral Restoration. 2009; 23(3): 236 – 240. 15. Vallitu PK. Glass fiber in fiber reinforced composites dalam matinlinna jp, handbook of oral biomaterials. Pan Stanford Publishing: Singapore; 2014. 255 – 270. 16. Wallenberger FT, Watson JC, Hong Li. Glass fiber. ASM International. 2001; 21: 27 – 30. 17. Sari WP, Sumantri D, Imam DNA, Sunarintyas S. Pemeriksaan komposisi glass fiber komersial dengan teknik X-Ray Fluoresence Spectrometer (XRF). J. B-Dent. 2014; 1(2): 151 – 160. 18. Lipatov YV, Gutnikov SI, Manylov MS, Lazoryak BI. Effect of ZrO2 on The Alkali Resistance and Mechanical Properties of Basal fibers. In arganic Materials, Moscow State University. 2012; 48(7): 751 – 755. 19. Rapp CF, Mattson SM. Glass fiber composition. Paten EP 1027298; 2001. A4, 1 – 6. 20. Kulshreshtha AK, Vesile C. Handbook of polymer blends and composites, 2thed. Rapra Technology: Shawbury; 2002. 139. 21. Mortier E, Jager S, Gerdolle DA, Dahoun A. Influence of filler amount on water sorption and solubility of three experimental flowable composite resins. Journal of Materials Science and Engineering with Advanced Technology. 2013; 7(1): 35 – 4. 22. Schmaltz G, Bindslev DA. Biocompatibility of dental materials. Springer, Verlag Berlin Heidelberg; 2009. 189 – 190. 23. Wei YP, Silikas N, Zhang ZT, Watts DC. The relationship between cyclic hygroscopic dimensional changes and water sorption/desorption of self-adhering and new resinmatrix composites. Dent. Material Journal. 2013; 29: 218 – 226. 24. Mallick PK. Fiber reinforced composites. Manufacturing and Desain, 3th ed. CRC Press: Franc; 2008. 212 – 235.



DOI: https://doi.org/10.22146/majkedgiind.11249

Article Metrics

Abstract views : 4657 | views : 6553

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics