Karakteristik Hidrogeologi dan Hidrogeokimia DAS Tempuran Lereng Barat Kompleks Gunungapi Bromo-Tengger

https://doi.org/10.22146/mgi.89369

Heru Hendrayana(1*), Indra Agus Riyanto(2), Azmin Nuha(3)

(1) Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(2) Departemen Sains Informasi Geografi, Fakultas Sains, Teknologi, Teknik, dan Matematika, Universitas Maha Karya Asia, Yogyakarta, Indonesia.
(3) Groundwater Working Group (GWWG), Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Abstrak Lereng bagian barat Gunungapi Bromo meiliki peranan penting dalam penyediaan air untuk masyarakat disekitarnya. Penggunaan air tanah cukup intensif baik domestik, pertanian, dan industri pada lereng bagian barat Gunungapi Bromo. Lerang bagian barat bagian barat Gunungapi Bromo belum pernah dilakukan kajian detail baik potensi, kualitas, dan imbuhan air tanah. Kajian tersebut di tujukan untuk mengetahui kondisi air tanah di lereng bagian barat Gunungapi Bromo supaya dapat dimanfaatkan secara berkelanjutan. Metode yang digunakan dalam penelitian ini terdiri atas pengamatan batuan, pengukuran muka air tanah, pengukuran kimia air tanah TDS, pH, EC, dan suhu, analisis geokimia berdasarkan diagram piper, diagram fingerprint, dan diagram kurlov, analisis isotop asal usul air tanah dan imbuhan air tanah. Litologi di area kajian terdiri atas endapan pasir kerikilan, endapan pasir, batupasir, konglomerat, breksi laharik, lapilli tuff, tuff, breksi, dan lava andesit. Nilai TDS, pH, Suhu, dan EC di DAS Tempuran semakin meningkat dari hulu ke hilir. Pola aliran air tanah pada DAS Tempuran secara umum mengalir dari arah selatan menuju utara. Satuan lava dan breksi andesit merupakan akuifer, lava andesit dan breksi andesit merupakan akuiklud, jatuhan piroklastik merupakan akuifer, dan tuf dan lapilli tuf merupakan akuitard. Tipe air tanah pada DAS Tempuran didominasi oleh tipe kalsium bikarbonat (diagram piper) dan kalsium magnesium bikarbonat (diagram kurlov), dan diagram fingerprint terdapat 3 sistem air tanah. Sampel air tanah di DAS Tempuran keseluruhan berasal dari air meteorik. Imbuhan air tanah di DAS termpuran berasal dari elevasi 430-805 mdpl. Daerah imbuhan air tanah terdapat di Kecamatan Pasepran, Puspo, dan Tutur. Air tanah di area kajian secara kualitas dan kuantitas tergolong sangat baik.

Abstract The western slopes of Mount Bromo have an important role in providing water for the surrounding community. Groundwater use is quite intensive, both domestically, agriculturally, and industrially, on the western slopes of Mount Bromo. The western slope of Mount Bromo has never had a detailed study of its potential, quality, and groundwater recharge. The study was aimed at determining the condition of groundwater on the western slopes of Mount Bromo so that it can be used sustainably. The methods used in this research consist of rock observations, measurements of groundwater levels, measurements of groundwater chemistry (TDS, pH, EC, and temperature), geochemical analysis based on Piper diagrams, fingerprint diagrams, and Kurlov diagrams, isotope analysis of the origin of groundwater, and recharge. groundwater. The geology in the study area consists of gravelly sand deposits, sandstone, conglomerate, laharic breccia, lapilli tuff, andesite breccia, and andesitic lava. The TDS, pH, temperature, and EC values in the Tempuran watershed increase from upstream to downstream. The groundwater flow pattern in the Tempuran watershed generally flows from south to north. Units of lava and andesite breccia are aquifers; andesite lava and andesite breccia are aquicludes; pyroclastic falls are aquifers; and tuff and tuff lapilli are aquitards. The groundwater types in the Tempuran watershed are dominated by calcium bicarbonate (Piper diagram) and calcium magnesium bicarbonate (Kurlov diagram), and in the fingerprint diagram, there are 3 groundwater systems. The entire groundwater sample in the Tempuran watershed comes from meteoric water. Groundwater recharge in the purest watershed comes from an elevation of 430–805 meters above sea level. Groundwater recharge areas are in the Pasepran, Puspo, and Tutur Districts. The study area’s groundwater quality and quantity are rated as very good


Keywords


geologi; geokimia; isotop; imbuhan air tah; model konseptual

Full Text:

PDF


References

Angelakis, A. N., Voudouris, K. S., & Mariolakos, I. (2016). Groundwater utilization through the centuries focusing on the Hellenic civilizations. Hydrogeology Journal, 24(5), 1311–1324. https://doi.org/10.1007/s10040-016-1392-0

Batan. 2006. Laporan isotop air tanah PT Nestle. Bandung : Badan Atom Nasional.

Baud, B., Lachassagne, P., Jourde, H., De Montety, V., Fadillah, A., Dörfliger, N., Hendrayana, H., & Rachmansyah, A. (2021). Preliminary conceptual model of the Arjuno Welirang hydrogeological system, and comparison with the Bromo: An illustration of the hydrogeological systems diversity in volcanic areas. IOP Conference Series: Earth and Environmental Science, 851(1). DOI 10.1088/1755-1315/851/1/012016

BPDAS. 2004. Informasi Teknik Rehabilitasi Lahan dan Konservasi Tanah. Yogyakarta : Departemen Kehutanan Balai Pengelolaan DAS Serayu Opak Progo.

Cholo, B. E., & Tolossa, J. G. (2023). Identification of groundwater imbuhan and flow processes inferred from stable water isotopes and hydraulic data in Bilate River watershed, Ethiopia. Hydrogeology Journal, 31(6). https://doi.org/10.1007/s10040-023-02698-3

Giordano, M. (2009). Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34, 153–178. DOI 10.1146/annurev.environ.030308.100251

Glynn, P. D., & Plummer, L. N. (2005). Geochemistry and the understanding of ground-water systems. Hydrogeology Journal, 13(1), 263–287. https://doi.org/10.1007/s10040-004-0429-y

Hadian, M.S.D., Hendarmawan, Sulaksanan, N., and Azy, F.N. (2016). Hydrogeology of volcanic characterisation based on Volcanic Facies,Ground, Water Chemical Content, and Stable Isotope of Groundwater. Proceeding International of Chemical, Biology, and Environment Engineering. https://DOI:10.7763/IPCBEE.2016.V94.22

Hendrayana, H., Harijoko, A., Riyanto, I. A., Nuha, A., & Ruslisan. (2023). Groundwater chemistry characterization in the South and Southeast Merapi Volcano, Indonesia. Indonesian Journal of Geography, 55(1), 10–29. https://doi.org/10.22146/ijg.76433

Hendrayana, H., Nuha, A., Riyanto, I. A., & Aprimanto, B. (2021a). Kajian Perubahan Muka Air tanah di Cekungan Air tanah Yogyakarta-Sleman. Majalah Geografi Indonesia, 35(1), 30–44. https://doi.org/10.22146/mgi.62396

Hendrayana, H., Riyanto, I. A., & Nuha, A. (2020). Tingkat Pemanfaatan Air tanah di Cekungan Air tanah (CAT) Yogyakarta-Sleman. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 4(2), 127–137. https://doi.org/10.29408/geodika.v4i2.2643

Hendrayana, H., Riyanto, I. A., Nuha, A., & Lisan, A. R. an K. (2021a). Unregistered Artesian Well Management in Pasuruan, Indonesia: An Attempt to Protect Groundwater Resources. Indonesian Journal of Geography, 53(3), 453–464. https://doi.org/10.22146/IJG.68185

Houben, G. J., & Batelaan, O. (2022). The Thiem team - Adolf and Günther Thiem, two forefathers of hydrogeology. Hydrology and Earth System Sciences, 26(15), 4055–4091. https://doi.org/10.5194/hess-26-4055-2022

Irawan, D.E., Puradimaja, D.J., Notosiswoyo, S., and Soemintadiredja, P. (2009). Hydrogeochemistry of volcanic hydrogeology based on cluster analysis of Mount Ciremai, West Java, Indonesia. Journal of Hydrology, 376(1–2), 221–234. https://doi.org/10.1016/j.jhydrol.2009.07.033

Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., & Ross, A. (2016). Integrated groundwater management: Concepts, approaches and challenges. In Integrated Groundwater Management: Concepts, Approaches and Challenges, (pp. 1–762). https://doi.org/10.1007/978-3-319-23576-9

Khasanah, N., Tanika, L., Pratama, L. D. Y., Leimona, B., Prasetiyo, E., Marulani, F., Hendriatna, A., Zulkarnain, M. T., Toulier, A., & Van Noordwijk, M. (2021). Groundwater-extracting rice production in the Rejoso water-shed (Indonesia) reducing urban water availability: Characterisation and intervention priorities. Land, 10(6), 1–28. https://doi.org/10.3390/land10060586

Maheswari, A.S., Putra, D.P.E., Handini, E., Wilopo, W., dan Susatio, R. 2023. Karakteristik Hidrokimia dan Model Konseptual Sistem Aquifer di Sumberarum, Tempuran, Magelang, Jawa Tengah. Majalah Geografi Indonesia, 37(2), 138-146. https://DOI:10.22146/mgi.70636

Maheswari, A.S., Putra, D.P.E., Handini, E., Wilopo, W., dan Susatio, R. (2023). Karakteristik Hidrokimia dan Model Konseptual Sistem Akuifer di Desa Sumberarum, Kecamatan Tempuran, Kabupaten Magelang, Jawa Tengah. Majalah Geografi Indonesia, 37(2), 138-146.

Peraturan Menteri Kesehatan RI. (2010). Nomor 492, Tentang Persyaratan Kualitas Air Minum. Kementerian Kesahatan. Jakarta.

Poespowardoyo, R.S. (1984). Peta Hidrogeologi Indonesia 1:250.000 Lembar X Kediri (Jawa). Bandung: Direktorat Geologi Tata Lingkungan.

Rosyidi, M. I. (2018). Journal of Indonesian Tourism and Development Studies The Challenges of Developing Tourism Events in Bromo Tengger Semeru National Park. J. Ind. Tour. Dev. Std, 6(3). https://doi.org/10.21776/ub.jitode.2018.006.03.02

Santosa, S., & Suwarti, T. (1992). Peta Geologi Lembar Malang skala 1:100.000. Bandung : Pusat Penelitian dan Pengembangan Geologi.

Selles, A., Deffontaines, B., Hendrayana, H., & Violette, S. (2015). The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. Journal of Asian Earth Sciences, 108, 33–47. https://doi.org/10.1016/j.jseaes.2015.04.026

Selles, A., Deffontaines, B., Hendrayana, H., & Violette, S. (2015). The eastern flank of the Merapi volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. Journal of Asian Earth Sciences, 108, 33–47. https://doi.org/10.1016/j.jseaes.2015.04.026

Suharsono, & Suwarti, T., 1992, Peta Geologi Lembar Probolinggo skala 1:100.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sunarmi, N., Kumailia, E. N., Nurfaiza, N., Nikmah, A. K., Aisyah, H. N., Sriwahyuni, I., & Lailly, S. N. (2022). Analisis faktor unsur cuaca terhadap perubahan iklim di Kabupaten Pasuruan pada tahun 2021 dengan metode Principal Component Analysis. Newton-Maxwell Journal of Physics, 3(2), 56–64. https://doi.org/10.33369/nmj.v3i2.23380

Toulier, A., Baud, B., Montety, V. De, Lachassagne, P., Leonardi, V., Pistre, S., Dautria, J., & Hendrayana, H. (2019). Regional Studies Multidisciplinary study with quantitative analysis of isotopic data for the assessment of imbuhan and functioning of volcanic aquifers : Case of Bromo-Tengger volcano, Indonesia. Journal of Hydrology, 26, 100634. https://doi.org/10.1016/j.ejrh.2019.100634

Wijatna, A.B., Sudarmadji., Sunarno., dan Hendrayana, H. (2013). Studi Variabilitas Isotop Airhujan Sebagai Fungsi Elevasi untuk Mendapatkan Merapi Meteoric Water Line (MMWL). 35(1), 50-57.

Zaennudin, A., Hadisantono, R. D., Erfan, R. D., & Mulyana, A. R. (1994). Peta Geologi Gunungapi Bromo - Tengger, Jawa Timur skala 1:50.000. Jakarta: Direktorat Vulkanologi.



DOI: https://doi.org/10.22146/mgi.89369

Article Metrics

Abstract views : 3526 | views : 2613

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Heru Hendrayana, Indra Agus Riyanto, Azmin Nuha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 164/E/KPT/2021

Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025

ISSN  0215-1790 (print) ISSN 2540-945X  (online)

 

website statistics Statistik MGI