Pengaruh Tingkat Kompresi Citra ALOS AVNIR-2 terhadap Akurasi Hasil Transformasi Indeks Vegetasi dan Klasifikasi Penutup Lahan Wilayah Salatiga dan Ambarawa, Jawa Tengah
Projo Danoedoro(1*)
(1) Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Abstrak Penggunaan teknik kompresi untuk menghemat ukuran penyimpanan citra digital telah banyak dijumpai dalam aplikasi keseharian. Di sisi lain, kompresi citra juga dapat memberikan konsekuensi berupa kehilangan detil data, yang akan berpengaruh pada integritas data. dan secara teoretis juga akan berpengaruh pada kualitas turunan data. Penelitian ini mengkaji pengaruh tingkat kompresi citra digital multispektral ALOS-AVNIR2 yang terdiri dari empat saluran dengan resolusi spasial 10 meter terhadap akurasi hasil transformasi indeks vegetasi dan klasifikasi penutup lahan untuk wilayah Salatiga-Ambarawa, Jawa Tengah. Citra dikompresi pada sembilan tingkat, yaitu dari tidak kehilangan detil sama sekali (100%, atau sama dengan data asli) hingga 10%, dengan interval 10%. Indeks Vegetasi yang diterapkan meliputi NDVI, TVI dan MSARVI. Klasifikasi multispektral yang diujicobakan meliputi klasifikasi per-piksel dan klasifikasi berbasis objek. Hasil penelitian ini menunjukkan bahwa transformasi indeks vegetasi dan klasifikasi per-piksel mengalami penurunan akurasi secara drastis, sejalan dengan meningkatnya kompresi citra, sementara klasifikasi berbasis objek mengalami perubahan akurasi relatif lebih sedikit dibandingkan analisis per-piksel. Temuan penelitian ini menunjukkan bahwa penggunaan citra terkompresi sebagai masukan proses klasifikasi secara digital sebaiknya dihindari. Meskipun demikian, kalau pun terpaksa dilakukan karena masalah ketersediaan data, maka metode klasifikasi berbasis objeklah yang sebaiknya diterapkan; dan untuk klasifikasi per-piksel maka algoritma jarak minimum terhadap rerata-lah yang sebaiknya dipilih.
Abstract The use of compression techniques for saving storage space of digital imagery has been commonly found in daily applications. On the other hand, image compression can also provide consequences of losing data details, which will affect data integrity and theoretically will also affect the quality of data derived. This study examined the effect of ALOS-AVNIR2 multispectal image compression level consisting of four channels with 10 m spatial resolution to the accuracies of vegetation index transformation and land cover classification for Salatiga and Ambarawa region, Central Java. This study compressed the image into nine levels, i.e. from lossless details (100%, or equal to original data) up to 10% compression, at 10% intervals. The applied vegetation indices include NDVI, TVI and MSARVI. The multispectral classifications that were piloted include the per-pixel and object-based classification methods. The results of this study indicated that the vegetation index transformation and per-pixel classification have drastically decreased accuracies, in line with the increase in image compression; while the object-based classification has relatively more stable than per-pixel analysis. The findings of this study showed that the use of compressed imagery as an input to digital classification process should be avoided. However, even if it has to be done due to data availability issues, then object-based classification methods should be applied; and especially for per-pixel classification, the minimum distance to mean algorithm should be chose.
Keywords
Full Text:
PDFReferences
Al-Janabi, A.A.J. (2015). Ultrafast and Efficient Scalable Image Compression Algorithm. J. ICT Res. Appl. Vol. 9, No. 3, 2015, 214-235.
Aronoff, S. (1990) Geographic Information Systems: A Management Perspective. Ottawa: WL Publications
Arif, N. Danoedoro, P., dan Hartono (2017). Remote Sensing And Gis Approaches To A Qualitative Assessment Of Soil Erosion Risk In Serang Watershed, Kulonprogo, Indonesia. Geoplanning, Vol.4 No.2, 131-142
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P. Addink, E., Feitosa, Q.R., van der Meer, F., van der Werff, H., van Coillie, F., and Tiede, D. (2014). Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, Vol 87, January 2014, 180-191. https://doi.org/10.1016/j.isprsjprs.2013.09.014
Cao, C. (1992). Detecting the Scale and Resolution Effects in Remote Sensing and GIS. PhD Dissertation. Louisiana State University
Chouwdury, M. H., and Khatun, A. (2012). Image Compression Using Discrete Wavelet Transform. International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
Chang, K. T. (2017); Introduction to Geographic Informaton Systems. 7th edition. New York: McGraw Hill.
Danoedoro, P. (2006). Extracting Land-Use Information Related to Socio-Economic Function From Quickbird Imagery: A Case Study of Semarang Area, Indonesia. Paper presented at the Map Asia 2006 Conference, Bangkok.
Danoedoro, P. (2009) Land-use Information from the Satellite Imagery: Versatility and Contents for Local Physical Planning. Saarbrucken: Lambert Academic Publishing
Danoedoro, P. (2013). The Effect of Image Compression Level on The Land-Cover Classification Accuracy Of ALOS AVNIR-2 Data Using Per-Pixel And Object-Based Classification. Proceedings of the 34th Asian Conferece on Remote Sensing, Denpasar, Bali,
Danoedoro, P., Kristian, G., dan Rahmi, K.I.N. (2015). Pengaruh metode koreksi radiometrik citra ALOS AVNIR-2 terhadap akurasi hasil estimasi karbon vegetasi tegakan di wilayah kota Semarang bagian timur. Prosiding Pertemuan Ilmiah Tahuan MAPIN ke-20, Bogor.
Danoedoro, P. dan Zukhrufiyati, A. (2015). Integrating Spectral Indices and Geostatistic based on Landsat-8 Imagery For Surface Clay Content Mapping In Gunung Kidul Area, Indonesia. Proceedings oth the 34th Asian Conference on Remote Sensing, Manila, The Philippines.
Dewa, R.P. and Danoedoro, P. (2017). The Effect of Image Radiometric Correction on The Accuracy of Vegetation Canopy Density Estimate Using Several Landsat-8 OLI’s Vegetation Indices: A Case Study of Wonosai Area, Gunung Kidul Regency. IOP Conference Series: Earth and Environmental Science, Vol. 54, Issue 1.
Danoedoro, P. (2019). Multidimensional Land-use Information for Local Planning and Land Resources Assessment in Indonesia: Classification Scheme for Information Extraction from High-Spatial Resolution Imagery. Indonesian Journal of Geography 51 (2), 131-146
Danoedoro, P., Ananda, I.N., Kartika, C.S.D., Umela, A.F. Indayani, A.B. Testing a detailed classification scheme for land-cover/land-use mapping of typical Indonesian landscapes: case study of Sarolangun, Jambi and Salatiga, Central Java. Indonesian Journal of Geography 52 (3), 327 - 340
Dragut, L., Csililik, O., Eisank, C., and Tiede, D. (2014). Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers. ISPRS Journal of Photogrammetry and Remote Sensing, Vol 88, February 2014, 119-127. https://doi.org/10.1016/j.isprsjprs.2013.11.018
Dwiputra, A.J., Suharyadi, R., dan Danoedoro, P. (2016). Pengaruh Jumlah kelas dan skema Klasifikasi terhadap Akurasi Informasi penggunaan Lahan Hasi Klasifikasi berbasis Objek dengan Teknik Support Vector Machine di Sebagian Kabupaten Kebumen Jawa Tengah. Majalah Geografi Indonesia Vol.29 No.2, pp. 120-133
Eastman, J. R. (2019). Idrisi TerrSet – Guide to GIS and Image Processing. Worcester, MA: Clark Labs, Clark University,
Gao, J. (2010). Digital Analysis of Remotely Sensed Imagery. New York: McGraw Hill. Ghani, F., Khan, E., and Hami, S. (2000). A Modified JPEG Image Compression Technique. IETE Journal of Research Vol. 46, Issue 5: New Tools in Image Processing, pp 331-337. https://doi.org/10.1080/03772063.2000.11416174
Hardjo, K.S., Danoedoro, P., dan Zuharnen, (2014). Pendugaan Cadangan Karbon pada Perkebunan Tanaman Teh (Camellia Sinensis) melalui Citra Penginderaan Jauh ALOS AVNIR-2. Majalah Geografi Indonesia Vol. 28 No.1, pp 65-70
Hidayati, I. N. Suharyadi, R. Danoedoro, P. (2018a) Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. Forum Geografi, Vol.32, No.1, pp 96-108
Hidayati, I. N. Suharyadi, R. Danoedoro, P. (2018b). Kombinasi indeks citra untuk analisis lahan terbangun dan vegetasi perkotaan. Majalah Geografi Indonesia, Vol.32, No.1, pp.24-32
Hidayati, I. N. Suharyadi, R. Danoedoro, P. (2018c). Exploring Spectral Index Band and Vegetation Indices for Estimating Vegetation Area. The Indonesian Journal of Geography 50 (2), 211-221
Huete, A., Didan, K., . Miura, T.,. Rodriguez, E.P, Gao, X., and Ferreira, L.G. (2002). Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment No. 83 (2002), 195 –213
Hussain, A. J., Al-Fayadh, Ali., and Radi, N. (2018). Image compression techniques: A survey in lossless and lossy algorithms. Neurocomputing Vol. 300, 44-69. https://doi.org/10.1016/j.neucom.2018.02.094.
Jensen J.R. (2015), Introductory Digital Image Processing. 4th edition. Englewood Cliffs: McGraw HillLillesand, T.M., Kiefer, R.W., and Chipman, J.W. (2014). Remote Sensing and Image Interpretation. 7th edition. New York: John Wiley and Sons.
Mather, P.M. and Koch, M. (2011). Computer Processing of Remotely Sensed Data: An Introduction. London: Wiley
Navulur, K. (2007). Multispectral Image Analysis using the Object-oriented Paradigm. New York: CRC Press
Sulistyo, B., Gunawan, T., Hartono, Danoedoro, P. and Listyaningrum, N. ( 2017). Absolute Accuracy of the Erosion Model ofDEM-NDVI and it's Modification. International Journal of Geoinformatics Vol. 13/No. 2, pp 23-28
Tan, L., Zeng, Y. and Zhang, W. 2019. Research on Image Compression Coding Technology. IOP Conf. Series: Journal of Physics: Conf. Series 1284 (2019) 012069. IOP Publishing. doi:10.1088/1742-6596/1284/1/012069
Umarhadi, A.D. and Danoedoro, P. (2020) The Effect of Topographic Correction on Canopy Density Mapping Using Satellite Imagery in Mountainous Area. International Journal on Advance Science, Engineering and Information Technology, Vol.10, No.3, pp.1317 - 1325
Wisnawa, I.G.Y., Sutanto, dan Sudibyakto. (2008). Kemampuan Saluran Termal Citra Landsat 7 Etm+ dan Citra ASTER dalam Memetakan Pola Suhu Permukaan di Kota Denpasar dan Sekitarnya. Majalah Geografi Indonesia. Vol 22, No 1: Maret 2008, pp. 39-51.
DOI: https://doi.org/10.22146/mgi.32349
Article Metrics
Abstract views : 1748 | views : 1568Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Majalah Geografi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI