Cryptic Diversity of Barred Mudskippers, Periophthalmus argentilineatus (Valenciennes, 1837), from the Southern Coast of Java and East Lombok, Indonesia inferred by COI Mitochondrial Gene

https://doi.org/10.22146/jtbb.84328

Tuty Arisuryanti(1*), Katon Waskito Aji(2), Happy Herawati(3), Indah Paramita Sari(4), Febrina Amaliya Rha’ifa(5), Diana Febriyanti(6), Dwi Sendi Priyono(7)

(1) SCOPUS ID: 57190940210, Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(2) Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(3) Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(4) Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(5) Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(6) Laboratory of Genetics and Breeding Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(7) Laboratory of Animal Systematics Faculty of Biology Universitas Gadjah Mada Yogyakarta 55281 Indonesia
(*) Corresponding Author

Abstract


The Barred Mudskipper (P. argentilineatus) is an amphibious fish species that displays fully terrestrial behaviour during low tides. Previous studies have indicated the existence of cryptic species of the barred mudskipper, leading to difficulties in taxonomic identification due to similarities in morphological characteristics. Therefore, this study aimed to generate DNA barcodes for Indonesian barred mudskipper populations. We collected ten specimens from Clungup Beach and Kondang Bandung Beach, representing our samples. Additionally, we incorporated 25 previously collected COI sequences from Indonesia into our analysis. The mitochondrial COI gene was amplified using PCR and analysed using various bioinformatics programs. This study provides evidence for the presence of three genetically distinct clades (A, B, and C) within the P. argentilineatus population in Indonesia, with a deep genetic divergence of 2.41% to 6.12%. Clade A showed a high genetic divergence of 5.51-6.12%, suggesting the presence of a cryptic species consistent with previous studies. The high level of haplotype diversity and low nucleotide diversity observed in each clade suggest a population bottleneck followed by a rapid expansion. The lack of geographical separation in the haplotype network analysis indicates that gene flow between populations may have been facilitated by glaciation events in the past. These findings contribute to a better understanding of the biodiversity of the barred mudskipper species in Indonesia and will aid in the accurate identification of cryptic species. This study highlights the importance of using molecular techniques to complement morphological identification in understanding the evolution and diversity of mudskipper fish species.

 


Keywords


Barred mudskipper; Cryptic species; COI-mtDNA

Full Text:

PDF


References

Agorreta, A. & Rueber, L., 2012. A standardized reanalysis of molecular phylogenetic hypotheses of Gobioidei. Systematics and Biodiversity, 10(3), pp.375-390. doi: 10.1080/14772000.2012.699477.

Agorreta, A. et al., 2013. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular phylogenetics and evolution, 69(3), pp.619-633. doi: 10.1016/j.ympev.2013.07.017.

Aji, K.W. & Arisuryanti, T., 2021. Molecular Identification of Mudskipper Fish (Periophthalmus spp.) from Baros Beach, Bantul, Yogyakarta. Journal of Tropical Biodiversity and Biotechnology, 6(3), 66391. doi: 10.22146/jtbb.66391.

Andem, A.B. & Ekpo, P.B., 2014. Proximate and mineral compositions of mudskipper fish (Periophthalmus barbarus) in the mangrove swamp of Calabar river, southern Nigeria. The International Journal of Science and Technoledge, 2(2), pp.72.

Arisuryanti, T. et al., 2018. Genetic identification of two mudskipper species (Pisces: Gobiidae) from Bogowonto Lagoon (Yogyakarta, Indonesia) using COI mitochondrial gene as a DNA barcoding marker. AIP Conference Proceedings, 2002, 020068. doi: 10.1063/1.5050164.

Arisuryanti, T., Firdaus, N.U.N. & Hakim, L., 2020. Genetic characterization of striped snakehead (Channa striata Bloch, 1793) from Arut River, Central Kalimantan inferred from COI mitochondrial gene. AIP Conference Proceedings, 2260, 020001. doi: 10.1063/5.0015905.

Arisuryanti, T., Wei, N.W.V. & Austin, C., 2016. Molecular evidence for determination cryptic species of Indonesian swamp eel populations using denaturing gradient gel electrophoresis (DGGE). AIP Conference Proceedings, 1744(1), 020060. doi: 10.1063/1.4953534.

Bingpeng, X. et al., 2018. DNA barcoding for identification of fish species in the Taiwan Strait. PloS one, 13(6), e0198109. doi: 10.1371/journal.pone.0198109.

Darriba, D. et al., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9(8), pp.772-772. doi: 10.1038/nmeth.2109.

Darumas, U. & Tantichodok, P., 2002. New species of mudskipper (Gobiidae: Oxudercinae) from southern Thailand. Phuket Marine Biological Center Research Bulletin, 64, pp. 101-107.

Dodson, J.J., Colombani, F. & Ng, P.K.L., 1995. Phylogeographic structure in mitochondrial DNA of a South‐east Asian freshwater fish, Hemibagrus nemurus (Siluroidei; Bagridae) and Pleistocene sea‐level changes on the Sunda shelf. Molecular ecology, 4(3), pp.331-346. doi: 10.1111/j.1365-294X.1995.tb00226.x.

Febrianti, D. et al., 2023. Genetic Identification of Two Mudskipper Species (Oxudercidae: Periophthalmus) from Kulon Progo, Special Region of Yogyakarta, Indonesia. Journal of Tropical Biodiversity and Biotechnology, 8(2), jtbb78161. doi: 10.22146/jtbb.78161.

Fricke, R., Eschmeyer, W.N. & R. van der Laan., 2023. ‘Eschmeyer's Catalog Of Fishes: Genera, Species, References’, in The California Academy of Sciences, viewed 20 December 2023, from http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

García-De León, F.J. et al., 2018. Role of oceanography in shaping the genetic structure in the North Pacific hake Merluccius productus. PLoS One, 13(3), e0194646. doi: 10.1371/journal.pone.0194646.

Grant, W.A.S. & Bowen, B.W., 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of heredity, 89(5), pp.415-426. doi: 10.1093/jhered/89.5.415.

Hebert, P.D. et al., 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), pp.313-321. doi: 10.1098/rspb.2002.2218.

Hebert, P.D., Ratnasingham, S. & De Waard, J.R., 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1), pp.S96-S99. doi: 10.1098/rsbl.2003.0025.

Hou, G. et al., 2018. Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy and cryptic diversity. Molecular ecology resources, 18(1), pp.137-146. doi: 10.1111/1755-0998.12718.

Jaafar, Z. & Larson, H.K., 2008. A new species of mudskipper, Periophthalmus takita (Teleostei: Gobiidae: Oxudercinae), from Australia, with a key to the genus. Zoological Science, 25(9), pp.946-952. doi: 10.2108/zsj.25.946.

Jaafar, Z., Lim, K.K. & Chou, L.M., 2006. Taxonomical and morphological notes on two species of mudskippers, Periophthalmus walailakae and Periophthalmodon schlosseri (Teleostei: Gobiidae) from Singapore. Zoological Science, 23(11), pp.1043-1047. doi: 10.2108/zsj.23.1043.

Jaafar, Z., Polgar, G. & Zamroni, Y., 2016. Description of a new species of Periophthalmus (Teleostei: Gobiidae) from the Lesser Sunda Islands. Raffles Bull. Zool, 64, pp.278-283.

Khaironizam, M.Z. & Norma-Rashid, Y., 2002. Length-weight relationship of mudskippers (Gobiidae: Oxudercinae) in the coastal areas of Selangor, Malaysia. Naga, Worldfish Center Quarterly, 25, pp.20-22.

Kottelat, M., 2013. The Fishes of The Inland Waters of Southeast Asia: A Catalogue and Core Bibliography of The Fishes Known to Occur in Freshwaters, Mangroves and Estuaries. The Raffles Bulletin of Zoology, Suppl. 27, pp.1-663.

Kruitwagen, G. et al., 2007. Influence of morphology and amphibious life‐style on the feeding ecology of the mudskipper Periophthalmus argentilineatus. Journal of Fish Biology, 71(1), pp.39-52. doi: 10.1111/j.1095-8649.2007.01508.x.

Kumar, S. et al., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, pp.1547-1549. doi: 10.1093/molbev/msy096.

Larson, H.K. & Takita, T., 2004. Two new species of Periophthalmus (Teleostei: Gobiidae: Oxudercinae) from northern Australia, and a re-diagnosis of Periophthalmus novaeguineaensis. The Beagle: Records of the Museums and Art Galleries of the Northern Territory, 20, pp.175-185.

Leigh, J.W. & Bryant, D., 2015. POPART: full-feature software for haplotype network construction. Methods in ecology and evolution, 6(9), pp.1110-1116. doi: 10.1111/2041-210x.12410.

Li, Y. et al., 2019. Species identification and cryptic diversity in Pampus species as inferred from morphological and molecular characteristics. Marine Biodiversity, 49, pp.2521-2534. doi: 10.1007/s12526-019-00976-6.

Linh, N.M. et al., 2018. DNA barcoding application of mitochondrial COI gene to identify some fish species of family Gobiidae in Vietnam. Vietnam Journal of Marine Science and Technology, 18(4), pp.443-451. doi: 10.15625/1859-3097/13662.

Maddison, W.P. & Maddison, D.R., 2018. Mesquite: a Modular System for Evolutionary Analysis. Version 3.6. http://mesquiteproject.org.

McConnell, S.K.J., 2004. Mapping aquatic faunal exchanges across the Sunda shelf, South-East Asia, using distributional and genetic data sets from the cyprinid fish Barbodes gonionotus (Bleeker, 1850). Journal of Natural History, 38(5), pp.651-670. doi: 10.1080/002229302100003629.

Melo, B.F. et al., 2016. Cryptic species in the Neotropical fish genus Curimatopsis (Teleostei, Characiformes). Zoologica Scripta, 45(6), pp.650-658. doi: 10.1111/zsc.12178.

Miller, K.G. et al., 2005. The Phanerozoic record of global sea-level change. science, 310(5752), pp.1293-1298. doi: 10.1126/science.11164.

Murdy, E.O. & Takita, T., 1999. Periophthalmus spilotus, a new species of mudskipper from Sumatra (Gobiidae: Oxudercinae). Ichthyological Research, 46(4), pp.367-370. doi: 10.1007/bf02673979.

Murdy, E.O., 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Records of the Australian Museum, Supplement, 11(August 1989), pp.1–93.

Nelson, J.S. et al., 2000. Phylogeographic structure of false clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf. Marine Biology, 137, pp.727-736. doi: 10.1007/s002270000379.

Peakall, R. & Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19), pp.2537-2539. doi: 10.1093/bioinformatics/bts460

Polgar, G. (ed), 2014. ‘The mudskipper’, in World Wide Web electronic publication, viewed 31 January 2021 from http://www.themudskipper.org.

Polgar, G. et al., 2014. Phylogeography and demographic history of two widespread Indo-Pacific mudskippers (Gobiidae: Periophthalmus). Molecular Phylogenetics and Evolution 73, 161–176. doi: 10.1016/j.ympev.2014.01.014.

Polgar, G. et al., 2017. Habitat segregation and cryptic adaptation of species of Periophthalmus (Gobioidei: Gobiidae). Journal of fish biology, 90(5), pp.1926-1943. doi: 10.1111/jfb.13276.

Polgar, G., Sacchetti, A. & Galli, P. 2010. Differentiation and adaptive radiation of amphibious gobies (Gobiidae: Oxudercinae) in semi-terrestrial habitats. Journal of Fish Biology, 77, pp.1645–1664. doi: 10.1111/j.1095-8649.2010.02807.x.

Pormansyah et al., 2019. A review of recent status on Mudskippers (Oxudercine Gobies) in Indonesian Waters. Oceanography and Fisheries, 9(4), 555769. doi: 10.19080/OFOAJ.2019.09.555769.

Rambaut, A. 2019, ‘FigTree v 1.4.4.’, in Molecular Evolution, Phylogenetics and Epidemiology, viewed 31 March 2021, from http://tree.bio.ed.ac.uk/software/figtree/.

Rha’ifa, F.A. et al., 2021. DNA Barcode of Barred Mudskipper (Periophthalmus argentilineatus Valenciennes, 1837) from Tekolok Estuary (West Nusa Tenggara, Indonesia) and Their Phylogenetic Relationship with Other Indonesian Barred Mudskippers. Journal of Tropical Biodiversity and Biotechnology, 6(2), 59702. doi: 10.22146/jtbb.59702.

Rozas, J. et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), pp.3299-3302. doi: 10.1093/molbev/msx248.

Souza, C.R. et al., 2018. Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian coastal basins as revealed by DNA analyses. Hydrobiologia, 809, pp.309-321. doi: 10.1007/s10750-017-3482-y.

Suchard, M.A. et al., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution, 4(1), vey016. doi: 10.1093/ve/vey016.

Takita, T., Larson, H. K. & Ishimatsu, A. 2011. The natural history of mudskippers in northern Australia, with field identification characters. The Beagle, Records of the Museums and Art Galleries of the Northern Territory 27, pp.189–204. doi: 10.5962/p.287482.

Ward, R.D. et al., 2005. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), pp.1847-1857. doi: 10.1098/rstb.2005.1716.

Wu, R. et al., 2018. DNA barcoding of the family Sparidae along the coast of China and revelation of potential cryptic diversity in the Indo-West Pacific oceans based on COI and 16S rRNA genes. Journal of Oceanology and Limnology, 36(5), pp.1753-1770. doi: 10.1007/s00343-018-7214-6.

Xinxin, Y. et al., 2018. Mudskippers and their genetic adaptations to an amphibious lifestyle. Animals, 8(2), 24. doi: 10.3390/ani8020024.

Zemlak, T.S. et al., 2009. DNA barcoding reveals overlooked marine fishes. Moleculer Ecology Resources, 9 Suppl s1, pp.237-242. doi: 10.1111/j.1755-0998.2009.02649.x.



DOI: https://doi.org/10.22146/jtbb.84328

Article Metrics

Abstract views : 1335 | views : 492

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)