A Mini Review on Analysis of Potential Antibacterial Activity of Symbiotic Bacteria from Indonesian Freshwater Sponge: An Unexplored and A Hidden Potency

https://doi.org/10.22146/jtbb.82682

Edwin Setiawan(1*), Michael Einstein Hermanto(2), Nurlita Abdulgani(3), Endry Nugroho Prasetyo(4), Catur Riani(5), Dyah Wulandari(6), Anto Budiharjo(7)

(1) Biology Department, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Sukolilo, Surabaya, East Java 60111.
(2) Post Graduate Student Biology Department, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Sukolilo, Surabaya, East Java 60111.
(3) Biology Department, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Sukolilo, Surabaya, East Java 60111.
(4) Biology Department, Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Sukolilo, Surabaya, East Java 60111.
(5) School of Pharmacy, Institut Teknologi Bandung, Jl. Ganesa No.10 Bandung, 40132.
(6) Food Technology Department, Faculty of Agricultural Technology - Soegijapranata Catholic University (SCU), Jl. Pawiyatan Luhur IV/1, Bendan Duwur, Semarang 50219
(7) Biotechnology Study Program, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Sudharto SH, Semarang 50275, Indonesia; Molecular and Applied Microbiology Laboratory, Center of Research and Service – Diponegoro University, Jl. Prof. Sudharto SH, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Marine sponges have been investigated as potential bioresources because of their symbiotic relationship with microbes such as Actinobacteria that produce antibacterial substances. In contrast, a group of sponges, that inhabits freshwater environments called freshwater sponges (Order Spongillida Manconi & Pronzato, 2002) and consists of only one percent among all of the sponges’ species (Phylum Porifera Grant, 1836), has  not yet intensively examined.  For this reason, we screened, determined, evaluated, and reviewed by examining several databases in Scopus, Pub Med, and Google Scholar related to potential aspects of symbiotic bacteria and their antibacterial substances that can be further utilised  and developed into synthesised  antibacterial compounds, based on published metagenomic data of symbiotic bacteria in freshwater sponges. At the same time, we compared a composition of those freshwater symbionts to marine sponges’ symbionts whether those possess a similar composition or not. Moreover, a current report and a revisit study of freshwater sponges in East Java, initiate further direction on mapping of those symbiotic bacteria from Indonesia that can be nominated as potential groups possessing antibacterial properties.

 


Keywords


Antibacterial substances; Indonesian Freshwater sponges; Mini literature analysis; Symbiotic microbes; Potency mapping.

Full Text:

PDF


References

Altuğ, G. et al., 2021. The distribution and antibacterial activity of marine sponge-associated bacteria in the aegean sea and the sea of Marmara, Turkey. Current Microbiology 78(6), pp.2275-2290. doi: 10.1007/s00284-021-02489-7

Asagabaldan, M.A. et al., 2017. Identification and antibacterial activity of bacteria isolated from marine sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen. IOP Conference Series: Earth and Environmental Science, 55, 012019. doi: 10.1088/1755-1315/55/1/012019

Axenov-Gribanov, D. et al., 2016. The isolation and characterization of actinobacteria from dominant benthic macroinvertebrates endemic to Lake Baikal. Folia Microbiol (Praha), 61(2), pp.159-168. doi: 10.1007/s12223-015-0421-z

Belikov, S.I. et al., 2021. Genome analysis of the Janthinobacterium sp. Strain SLB01 from the diseased sponge of the Lubomirskia baicalensis. Current Issues in Molecular Biology, 43(3), pp.2220-2237. doi: 10.3390/cimb43030156

Bibi, F. et al., 2017. Bacteria from marine sponges: a source of new drugs. Current Drug Metabolism, 18(1), pp.11-15. doi: 10.2174/1389200217666161013090610

Bilal, M. et al., 2017. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World Journal of Microbiology and Biotechnology, 33(10), pp.191. doi: 10.1007/s11274-017-2356-9

Blunt, J.W. et al., 2018. Marine natural products. Natural product reports, 35(1), pp.8-53. doi: 10.1039/c7np00052a.

Briard, B. et al., 2015. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep, 5, 8220. doi: 10.1038/srep08220

Bull, A.T., Stach, J.E., 2007. Marine actinobacteria: new opportunities for natural product search and discovery. Trends in Microbiology, 15(11), pp.491-499. doi: 10.1016/j.tim.2007.10.004

Bultel-Poncé, V.V. et al., 1998. Metabolites from the sponge-associated bacterium Micrococcus luteus. J Mar Biotechnol, 6, 233-236.

Carrier, T.J. et al., 2022. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biology, 20 (1), 100. doi: 10.1186/s12915-022-01291-6

Cartwright, A. et al., 2020. Effects of freshwater sponge Ephydatia fluviatilis on conjugative transfer of antimicrobial resistance in Enterococcus faecalis strains in aquatic environments. Letters in Applied Microbiology, 71(1), pp.39-45. doi: 10.1111/lam.13310

Choi, E.J. et al., 2009. 6-Hydroxymethyl-1-phenazine-carboxamide and 1,6-phenazinedimethanol from a marine bacterium, Brevibacterium sp. KMD 003, associated with marine purple vase sponge. J Antibiot (Tokyo), 62(11), pp.621-624. doi: 10.1038/ja.2009.92

Cita, Y.P. et al., 2017. Antibacterial activity of marine bacteria isolated from sponge Xestospongia testudinaria from Sorong, Papua. Asian Pacific Journal of Tropical Biomedicine, 7(5), pp.450-454. doi: 10.1016/j.apjtb.2017.01.024

Clark, C.M. et al., 2022. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME Communications, 2, 22. doi: 10.1038/s43705-022-00105-8

Costa, R. et al., 2013. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microbial Ecology, 65(1), pp.232-244. doi: 10.1007/s00248-012-0102-2

de Voogd, N.J. et al., 2023, ‘The World Porifera Database’, in World Porifera Database viewed 2 February 2023, from https://www.marinespecies.org/porifera/

Dharamshi, J.E., et al., 2022. Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. ISME Journal, 16(12), pp.2725-2740. doi: 10.1038/s41396-022-01305-9

Dita, S.F., Budiarti, S. & Lestari, L., 2017. Sponge-associated actinobacteria: Morphological character and antibacterial activity against pathogenic bacteria. Jurnal Sumberdaya Hayati, 3(1), pp.21-26. doi: 10.29244/jsdh.3.1.21-26

Fieseler, L. et al., 2004. Discovery of the novel candidate phylum "Poribacteria" in marine sponges. Appl Environ Microbiol, 70(6), pp.3724-3732. doi: 10.1128/aem.70.6.3724-3732.2004

Gaikwad, S., Shouche, Y.S. & Gade, W.N., 2016. Microbial community structure of two freshwater sponges using illumina miseq sequencing revealed high microbial diversity. AMB Express, 6, 40. doi: 10.1186/s13568-016-0211-2

Giles, E.C. et al., 2013. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol, 83(1), pp.232-241. doi: 10.1111/j.1574-6941.2012.01467.x

Graffius, S. et al., 2023. Secondary metabolite production otential in a microbiome of the freshwater sponge Spongilla lacustris. Microbiology Spectrum, 11 (2), e04353-22. doi:10.1128/spectrum.04353-22

Grant, R.E., 1836. Animal Kingdom. In The cyclopaedia of anatomy and physiology. London: Sherwood, Gilbert, and Piper. pp.107-118.

Hentschel, U. et al., 2003. Microbial diversity of marine sponges. Prog Mol Subcell Biol, 37, pp.59-88. doi: 10.1007/978-3-642-55519-0_3.

Joseph, F.R.S., Iniyan, A.M. & Vincent, S.G.P., 2017. HR-LC-MS based analysis of two antibacterial metabolites from a marine sponge symbiont Streptomyces pharmamarensis ICN40. Microb Pathog, 111, pp.450-457. doi: 10.1016/j.micpath.2017.09.033

Kaluzhnaya, O.V., Lipko, I. & Itskovich, V., 2021. PCR-screening of bacterial strains isolated from the microbiome of the Lubomirskia baicalensis sponge for the presence of secondary metabolite synthesis genes. Limnology and Freshwater Biology, 4(2), pp.1137-1142. doi: 10.31951/2658-3518-2021-A-2-1137

Kaluzhnaya, O.V., Kulakova, N.V., Itskovich, V.B., 2012. Diversity of Polyketide Synthase (PKS) genes in metagenomic community of freshwater sponge Lubomirskia baicalensis. Molecular Biology, 46(6), pp.790-795. doi: 10.1134/S002689331206009X

Kanagasabhapathy, M., Nagata, S., 2008. Cross-species induction of antibacterial activity produced by epibiotic bacteria isolated from Indian marine sponge Pseudoceratina purpurea. World Journal of Microbiology and Biotechnology, 24(5), pp.687-691. doi: 10.1007/s11274-007-9525-1

Keller-Costa, T. et al., 2014. The freshwater sponge Ephydatia fluviatilis harbours diverse Pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity. PLOS ONE, 9(2), e88429. doi: 10.1371/journal.pone.0088429

Kumar, G. et al., 2020. Bacterial communities of sponges from the wetland ecosystem of Little Rann of Kutch, India with particular reference to Planctomycetes. 3 Biotech, 10(11), pp.1-10. doi: 10.1007/s13205-020-02449-1

Laport, M.S., Pinheiro, U., Rachid, C.T.C.d.C., 2019. Freshwater sponge Tubella variabilis presents richer microbiota than marine sponge species. Frontiers in Microbiology, 10, 2799. doi: 10.3389/fmicb.2019.02799

Lawen, A., 2015 Biosynthesis of cyclosporins and other natural peptidyl prolyl cis/trans isomerase inhibitors. Biochim Biophys Acta, 1850(10), pp.2111-2120. doi: 10.1016/j.bbagen.2014.12.009

Lee, N.M., 2020. Biotechnological Applications of Extremophilic Microorganisms. Germany: Walter de Gruyter GmbH & Co KG.

Manconi, R. & Pronzato, R., 2002. Suborder Spongillina subord. nov.: Freshwater sponges. In Systema Porifera. A guide to the classification of sponges, pp. 921-1020. Kluwer Academic/ Plenum Publishers, New York, Boston, Dordrecht, London, Moscow.

Manconi, R. et al., 2013. Biodiversity in South East Asia: an overview of freshwater sponges (Porifera: Demospongiae: Spongillina). Journal of Limnology, 72(s2), pp.15. doi: 10.4081/jlimnol.2013.s2.e15

Masaki, T. & Shimada, M., 2022. Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. International Journal of Molecular Sciences, 23(3), 1122. doi: 10.3390/ijms23031122

Mayer, A.M. & Hamann, M.T., 2005.Marine pharmacology in 2001--2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol, 140(3-4), pp.265-286. doi: 10.1016/j.cca.2005.04.004.

Meixner, M.J. et al., 2007. Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Molecular Phylogenetics and Evolution, 45(3), pp.875-886. doi: 10.1016/j.ympev.2007.09.007

Mohamed, N.M. et al., 2010. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. The ISME Journal, 4(1), pp.38-48. doi: 10.1038/ismej.2009.84

Moitinho-Silva, L. et al., 2017. Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME Journal, 11, pp.1651–1666. doi: 10.1038/ismej.2017.25

Morrow, C. & Cárdenas, P., 2015. Proposal for a revised classification of the Demospongiae (Porifera). Frontiers in Zoology, 12, 7. doi: 10.1186/s12983-015-0099-8

Pimentel-Elardo, S.M. et al., 2010. Anti-Parasitic Compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Marine Drugs, 8(2), pp.373-380. doi: 10.3390/md8020373

Pires, A.C.d.C. et al., 2020. Bacterial composition and putative functions associated with sponges, sediment and seawater from the Tioman coral reef system, Peninsular Malaysia. Marine Biology Research, 16(10), pp.729-743. doi: 10.1080/17451000.2021.1891250

Prastiyanto, M.E. et al., 2022, Bioprospecting of bacterial symbionts of sponge Spongia officinalis from Savu Sea, Indonesia for antibacterial potential against multidrug-resistant bacteria. Biodiversitas Journal of Biological Diversity, 23(2).pp.1118-1124 doi: 10.13057/biodiv/d230256

Retnowati, D. et al., 2021. Next-generation sequencing-based Actinobacteria community associated with Callyspongia sp. from Kepulauan Seribu Marine National Park, Jakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 22(9), pp.3702-3708 doi: 10.13057/biodiv/d220913

Riyanti et al., 2020. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Scientific Reports, 10, 19614. doi: 10.1038/s41598-020-76256-2

Rozas, E.E. et al., 2015. Reduction of RBL–2H3 cells degranulation by nitroaromatic compounds from a Bacillus strain associated to the Amazonian sponge Metania reticulata. Journal of the Marine Biological Association of the United Kingdom, 96(2), pp.567-572. doi: 10.1017/S002531541500106X

Schmidt. E.W. et al., 2000. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Marine Biology, 136(6), pp.969-977. doi: 10.1007/s002270000273

Seo, E.-Y. et al. 2016., Comparison of bacterial diversity and species composition in three endemic Baikalian sponges. In Annales de Limnologie-International Journal of Limnology. EDP Sciences. pp: 27-32

Setiawan, E. et al., 2023. Revisit Study of Freshwater Sponges Eunapius carteri (Bowerbank, 1863) and a New Record of Oncosclera asiatica Manconi and Ruengsawang, 2012 (Porifera: Spongillida) in Porong River, East Java, Indonesia. HAYATI Journal of Biosciences, 30(2), pp.232-245. doi: 10.4308/hjb.30.2.232-245

Sipriyadi, S. et al., 2022. Potential of marine sponge Jaspis sp.‐associated bacteria as an antimicrobial producer in Enggano Island. Indonesian Journal of Biotechnology, 27(3),pp.163-170. doi: 10.22146/ijbiotech.65943

Sirpu, N.N., Arumugam, M. & Karanam, G., 2018.Apoptotic role of marine sponge symbiont Bacillus subtilis NMK17 through the activation of caspase-3 in human breast cancer cell line. Molecular biology reports, 45(6), pp.2641-2651. doi: 10.1007/s11033-018-4434-y

Skelton, J. & Strand, M., 2013. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia, 709(1), pp.227-235. doi: 10.1007/s10750-013-1452-6

Sugden, S. et al., 2022. Microbiome of the freshwater sponge Ephydatia muelleri shares compositional and functional similarities with those of marine sponges. ISME Journal, 16, pp.2503–2512. doi: 10.1038/s41396-022-01296-7

Suwarno, D. et al., 2013. Past and future trends in nutrient export by 19 rivers to the coastal waters of Indonesia. Journal of Integrative Environmental Sciences, 10(1), pp.55-71. doi: 10.1080/1943815X.2013.772902

Unson, M.D., Holland, N.D. & Faulkner, D.J.,1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Marine Biology, 119, pp.1-11. doi: 10.1007/BF00350100

Webster, N.S. & Taylor, M.W., 2012. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol, 14(2), pp.335-346. doi: 10.1111/j.1462-2920.2011.02460.x.



DOI: https://doi.org/10.22146/jtbb.82682

Article Metrics

Abstract views : 1916 | views : 1216

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)