Astaxanthin Production from Green Microalga Haematococcus pluvialis under Various Bean Sprout Media Concentrations and Duration of UV Radiations
Biaggi Rakhmat Rheinan Hary(1), Boy Rahardjo Sidharta(2*), Ines Septi Arsiningtyas(3)
(1) Biology Study Program, Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Jalan Babarsari 44, Yogyakarta, Indonesia, 55281
(2) Biology Study Program, Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Jalan Babarsari 44, Yogyakarta, Indonesia, 55281
(3) Biotechno-Industry Research Group, Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Jalan Babarsari 44, Yogyakarta, Indonesia, 55281
(*) Corresponding Author
Abstract
Astaxanthin (AX) is known as a very strong antioxidant and has been utilised in many kinds of products such as foods, pharmaceutical, cosmetics, aquaculture, etc. One of the natural resources of AX is Haematococcus pluvialis which has been investigated by some researchers in order to enhance the AX production. However, the production of AX from the microalgae is still costly, hence, this present research is proposing low-cost methods namely bean sprout media (BSM) as an alternative growth media and UV radiation. The variations of BSM concentrations (2, 4, and 6 %) and times of UV radiation (1.5 and 3 hrs) were treated to H. pluvialis in laboratory conditions. BSM 4 % treatment showed an optimum growth of the microalga at 427 x 104 cell/ml (day 8) which also exhibited macrozooid, palmella, and aplanosore phases. UV radiation for 3 hr revealed that the concentration of AX production was as much as 17.37±0.04 mg/l. The research results were potential to be developed further in order to discover better and cheaper methods for scaling up AX production.
Keywords
Full Text:
PDFReferences
Ambati, R.R. et al., 2014. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications - A review. Marine Drugs, 12(1), pp.128-152. doi: 10.3390/md12010128.
Butler, T.O. et al., 2018. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology, 7(1), 2. doi: 10.3390/biology7010002.
dos Santos, A.C. & Lombardi, A.T., 2017. Growth, photosynthesis and biochemical composition of Haematococcus pluvialis at various pH Post-Graduate Program in Ecology and Natural Resources. Journal of Algal Biomass Utilization, 8(1), pp.1–15.
Evens, T.J., Niedz, R.P. & Kirkpatrick, G.J., 2008. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yields of Haematococcus pluvialis (Chlorophyceae). Journal of Applied Phycology, 20(4), pp.411–422. doi: 10.1007/s10811-007-9277-1.
Gao, Z. et al., 2015. Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. Journal of Applied Phycology, 27(5), pp.1853–1860. doi: 10.1007/s10811-014-0491-3.
Ghosh, S.A. et al., 2017. Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. Algal Research, 23, pp.161–165. doi: 10.1016/j.algal.2017.01.011.
Gómez, P.I. et al., 2013. Fromgenetic improvementtocommercial-scalemassculture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB PLANTS, 5, plt026. doi: 10.1093/aobpla/plt026.
Guerin, M., Huntley, M.E. & Olaizola, M., 2003. Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology, 21(5), pp.210-216. doi: 10.1016/S0167-7799(03)00078-7.
Han, D., Li, Y. & Hu, Q., 2013. Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae, 28(2), pp.131-147. doi: 10.4490/algae.2013.28.2.131.
Han, S. et al., 2019. A novel approach to enhance astaxanthin production in Haematococcus lacustris using a microstructure-based culture platform. Algal Research, 39, 101464. doi: 10.1016/j.algal.2019.101464.
He, B. et al., 2020. Ultrastructural changes of haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate. Algae, 35(3), pp.253–262. doi: 10.4490/algae.2020.35.5.22.
Hernayanti, H. & Simanjuntak, S.B.I., 2019. Antioxidant Effect of Chlorella vulgaris on Physiological Response of Rat Induced by Carbon Tetrachloride. Biosaintifika: Journal of Biology & Biology Education, 11(1), pp.84–90. doi: 10.15294/biosaintifika.v11i1.16393.
Higuera-Ciapara, I., Félix-Valenzuela, L. & Goycoolea, F.M., 2006. Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46(2), pp.185–196. doi: 10.1080/10408690590957188.
Huber, M. & Blaha-Robinson, K., 2016, ‘Algae Culture and PH’, in Algae Research Supply, viewed from https://algaeresearchsupply.com/pages/algae-culture-and-ph
Imamoglu, E., Dalay, M.C. & Sukan, F.V., 2009. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnology, 26(3–4), pp.199–204. doi: 10.1016/j.nbt.2009.08.007.
Iwamoto, 2000. Inhibition of Low-Density Lipoprotein Oxidation by Astaxanthin. J. Atheroscler. Thromb., 7(4), pp.216-222. doi: 10.5551/jat1994.7.216.
Kavitha, G. et al., 2015. Impact of UV-B Radiation on Haematococcus pluvialis Flotow Isolated from Himachal Pradesh under Laboratory Conditions. Journal of Academia and Industrial Research (JAIR), 3(11), pp.581-585.
Ministry of Health of the Republic Indonesia, 2018. Tabel Komposisi Pangan Indonesia. Direktorat Jendral Kesehatan Masyarakat.
Khazi, M.I. et al., 2021. Sequential Continuous Mixotrophic and Phototrophic Cultivation Might Be a Cost-Effective Strategy for Astaxanthin Production from the Microalga Haematococcus lacustris. Frontiers in Bioengineering and Biotechnology, 9, 740533. doi: 10.3389/fbioe.2021.740533.
Kobayashi, M. et al., 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 74(1), pp.61–63.
Kwak, H.S., Kim, J.Y.H. & Sim, S.J., 2015. A microreactor system for cultivation of Haematococcus pluvialis and astaxanthin production. Journal of Nanoscience and Nanotechnology, 15(2), pp.1618–1623. doi: 10.1166/jnn.2015.9321.
Le-Feuvre, R. et al., 2020. Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation. Journal of Applied Phycology, 32, pp.3831-3852. doi: 10.1007/s10811-020-02231-z.
Levin, I.A. & Fleurence, J., 2018. Microalgae in Health and Disease Prevention, Academic Press.
Li, Y. et al., 2012. Accurate quantification of astaxanthin from Haematococcus crude extract spectrophotometrically. Chinese Journal of Oceanology and Limnology, 30(4), pp.627–637.
Liu, Y., 2018. Optimization Study of Biomass and Astaxanthin Production by Haematococcus Pluvialis Under Minkery Wastewater Cultures. Dalhousie University Halifax.
Madigan, M.T. et al., 2015. Brock biology of microorganisms. 14th ed. Pearson.
Mehariya, S. et al., 2020. An integrated strategy for nutraceuticals from haematoccus pluvialis: From cultivation to extraction. Antioxidants, 9(9), 825. doi: 10.3390/antiox9090825.
Molino, A. et al., 2018. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of Biotechnology, 283, pp.51–61. doi: 10.1016/j.jbiotec.2018.07.010.
Muzaki, 2008. Kultur mikroalga H pluvialis astaxantin. J. Ris. Akuakultur, 3(3), pp.351–361.
Nurdianti, L., Aryani, R. & Indra, I., 2017. Formulasi dan Karakterisasi SNE (Self Nanoemulsion) Astaxanthin dari Haematococcus pluvialis sebagai Super Antioksidan Alami. Jurnal Sains Farmasi & Klinis, 4(1), p.36. doi: 10.29208/jsfk.2017.4.1.168.
Panis, G. & Carreon, J.R., 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, pp.175–190. doi: 10.1016/j.algal.2016.06.007.
Park, J.C. et al., 2014. Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess and Biosystems Engineering, 37(10), pp.2039–2047. doi: 10.1007/s00449-014-1180-y.
Prihantini, B.N., Damayanti, D. & Yuniati, R., 2007. PENGARUH KONSENTRASI MEDIUM EKSTRAK TAUGE (MET) TERHADAP PERTUMBUHAN Scenedesmus ISOLAT SUBANG. Makara Journal of Sains, 11(1), pp.1–9.
Putra, I.K.R.W., Anggreni, A.A.M.D. & Arnata, I.W., 2015. Pengaruh Jenis Media Terhadap Konsentrasi Biomassa. Rekayasa dan Manajemen Agroindustri, 3(2), pp.40–46.
Putri, D.S. & Alaa, S., 2019. The Growth Comparison of Haematococcus Pluvialis in Two Different Medium. Biota, 12(2), pp.90-97. doi: 10.20414/jb.v12i2.202.
Saha, S.K. et al., 2013. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresource Technology, 128, pp.118–124. doi: 10.1016/j.biortech.2012.10.049Get.
Shah, M.M.R. et al., 2016. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531. doi: 10.3389/fpls.2016.00531.
Shang, M. et al., 2016. Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole. Journal of Biotechnology, 236, pp.199–207. doi: 10.1016/j.jbiotec.2016.08.019.
Su, Y. et al., 2014. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresource Technology, 170, pp.522–529. doi: 10.1016/j.biortech.2014.08.018.
Tocquin, P., Fratamico, A. & Franck, F., 2011. Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N:P ratio on vegetative growth. Journal of Applied Phycology, 24, pp.365-373.
Trikuti, I.K., Anggreni, A.A.M.D., & Gunam, I.B.W., 2016. Pengaruh Jenis Media Terhadap Konsentrasi Biomassa dan Kandungan Protein Mikroalga Chaetoceros Calcitrans. Jurnal Rekayasa dan Manajemen Agroindustri, 4(2), pp.13–22.
Wang, S. et al., 2018. Accurate quantification of astaxanthin from Haematococcus pluvialis using DMSO extraction and lipase-catalyzed hydrolysis pretreatment. Algal Research, 35, pp.427–431. doi: 10.1016/j.algal.2018.08.029Get.
Wayama, M. et al., 2013. Three-Dimensional Ultrastructural Study of Oil and Astaxanthin Accumulation during Encystment in the Green Alga Haematococcus pluvialis. PLoS ONE, 8(1), e53618. doi: 10.1371/journal.pone.0053618.
Zhang, W.W. et al., 2018. Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors. Journal of Microbiology and Biotechnology, 28(12), pp.2019–2028. doi: 10.4014/jmb.1807.07008.
DOI: https://doi.org/10.22146/jtbb.73763
Article Metrics
Abstract views : 977 | views : 746Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)