Immunonutrition and Hepatoprotectant Aspects of Moringa Oleifera Leaf Nanoemulsion Syrup as an Antituberculosis Adjuvant for Children with Tuberculosis

https://doi.org/10.22146/jtbb.68291

Nyoman Budhi Wirananda Setiawan(1), Agus Indra Yudhistira Diva Putra(2), Made Indira Dianti Sanjiwani(3), Agung Wiwiek Indrayani(4*), Ida Ayu Ika Wahyuniari(5)

(1) Undergraduate Student of School of Medicine and Medical Profession, Faculty of Medicine, Udayana University, Bali
(2) Undergraduate Student of School of Medicine and Medical Profession, Faculty of Medicine, Udayana University, Bali
(3) Undergraduate Student of School of Medicine and Medical Profession, Faculty of Medicine, Udayana University, Bali
(4) Department of Pharmacology and Therapy, Faculty of Medicine, Udayana University, Bali
(5) Department of Histology, Faculty of Medicine, Udayana University, PB Sudirman Street, Denpasar, Bali, Indonesia, 80232
(*) Corresponding Author

Abstract


Tuberculosis in children is a global health problem that decreases the quality of life of children. Based on data from the Indonesian Ministry of Health in 2016, nearly 69.000 children had tuberculosis and the case keeps increasing every year. Moringa oleifera leaf nanoemulsion syrup has immunonutrition and hepatoprotectant effects in children with tuberculosis. Moringa oleifera leaf nanoemulsion syrup contains proteins, micronutrients, and minerals which have a biological role as an immunity agent and prevent toxic effects of tuberculosis drugs. Until now, the use of Moringa oleifera leaf nanoemulsion syrup has been carried out for the immunomodulatory and hepatoprotective aspects. Immunomodulatory and hepatoprotective aspects will be discussed further in this literature review. The sources of articles in this literature review are pubmed.com, ncbi.com, plosone.com, sciencedirect.com, and googleschoolar.com from 2010-2020, except when there is no new research against the article. The authors searched for the keywords: "immunonutrition", "tuberculosis in children", "hepatoprotectant", and "Moringa oleifera". As an immunomodulator, Moringa oleifera leaf nanoemulsion syrup stimulate activation of polimorphonuclear (PMN) cells. As a hepatoprotectant, Moringa oleifera leaf nanoemulsion syrup work by reducing the side effects of conventional tuberculosis drugs such as rifampicin by suppressing the action of cytochrome p450 (CYP1A2 and CYP2B), thus decreases the production of toxic hydrazine which causes liver toxicity in tuberculosis patient. Seeing the various interests in the immunomodulatory and hepatoprotective aspects, Moringa oleifera leaf nanoemulsion syrup can be used as an adjuvant therapy in overcoming tuberculosis in children by stimulating the activation of immunity cell such as PMN, increasing nutrient absorption, and suppressing the action of cytochrome p450 (CYP1A2 and CYP2B).


Keywords


Hepatoprotectant, Immunonutrition, Moringa oleifera, Secondary Metabolite, Tuberculosis in Children

Full Text:

PDF


References

Abd elhameed, M.F., 2018. Protective Effects of Moringa oleifera extract on Isoniazid and Rifampicin Induced Hepatotoxicity in Rats: Involvment of Adiponectin and Tumor Necrosis Factor-α. Egyptian Journal of Veterinary Sciences, 1(1), pp.25-34. doi: 10.21608/ejvs.2018.2349.1025

Aggarwal, A.N., 2019. Quality of life with tuberculosis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 17, 100121. doi: 10.1016/j.jctube.2019.100121

Aggerbeck, H. et al., 2018. C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: A phase 3 trial. PLoS ONE, 13(9), e0204554. doi: 10.1371/journal.pone.0204554

Alabi, O.J. et al., 2017. Effect of aqueous Moringa oleifera (Lam) leaf extracts on growth performance and carcass characteristics of hubbard broiler chicken. Revista Brasileira de Ciencia Avicola, 19(2), pp.273–280. doi: 10.1590/1806-9061-2016-0373

Al-Sheraji, S.H. et al., 2013. Prebiotics as functional foods: A review. Journal of Functional Foods, 5(4), pp.1542–1553. doi: 10.1016/j.jff.2013.08.009

Aristoff, P.A. et al., 2010. Rifamycins - Obstacles and opportunities. Tuberculosis 90(2), pp.94–118. doi: 10.1016/j.tube.2010.02.001

Buonsenso, D. et al., 2021. COVID-19 effects on tuberculosis care in Sierra Leone. Pulmonology, 27(1), pp.67–69. doi: 10.1016/j.pulmoe.2020.05.013

Buraimoh, A.A., Bako, I.G., & Ibrahim, F.B., 2011. Hepatoprotective Effect of Ethanolic Leave Extract of Moringa oleifera on the Histology of Paracetamol Induced Liver Damage in Wistar Rats. International Journal of Animal and Veterinary Advances, 3(1), pp.10–13.

Chan, S.L. et al., 2017. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS ONE, 12(10), e0186200. doi: 10.1371/journal.pone.0186200

Chandra Dinda, S., 2017. Exploring the Use of Lipid Based Nano-Formulations for the Management of Tuberculosis. Journal of Nanosciences: Current, 2(2), 1000112.

Chandrasekaran, P. et al., 2017. Malnutrition: Modulator of immune responses in tuberculosis. Frontiers in Immunology, 8, 1316. https://doi.org/10.3389/fimmu.2017.01316

Chodur, G.M. et al., 2018. Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Scientific Reports, 8(1), 7995. doi: 10.1038/s41598-018-26059-3

Davenne, T. & McShane, H., 2016. Why don’t we have an effective tuberculosis vaccine yet? Expert Review of Vaccines, 15(8), pp.1009–1013. doi: 10.1586/14760584.2016.1170599

Delgado, B.J., & Bajaj, T., 2019. Ghon Complex (3rd ed., Vol. 2018). StatPearl Publishing.

Djoko, K.Y. et al., 2015. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. Journal of Biological Chemistry, 290(31), pp.1854–1861. doi: 10.1074/jbc.R115.647099

Famewo, E.B., Clarke, A.M. & Afolayan, A.J., 2017. The effect of polyherbal medicines used for the treatment of tuberculosis on other opportunistic organisms of humans infected with tuberculosis. Pharmacognosy Magazine, 13(51), S539–S543. doi: 10.4103/pm.pm_468_16

Feng, W., Ao, H. & Peng, C., 2018. Gut microbiota, short-chain fatty acids, and herbal medicines. Frontiers in Pharmacology, 9, 1354. doi: 10.3389/fphar.2018.01354

Goyal, N., Yadav, V. & Rastogi, M., 2020. Food and Agriculture Spectrum Journal Probiotics, prebiotics & synbiotics: A new Era. www.gsrl.orghttps://fasj.org/index.php/fasj/article/view/3

Harausz, E.P. et al., 2018. Treatment and outcomes in children with multidrug-resistant tuberculosis: A systematic review and individual patient data meta-analysis. PLoS Medicine, 15(7), e1002591. doi: 10.1371/journal.pmed.1002591

Harwansh, R.K., Deshmukh, R. & Rahman, M.A., 2019. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51, pp.224–233. doi: 10.1016/j.jddst.2019.03.006

Hemalatha, R. et al., 2017. Effect of probiotic supplementation on total lactobacilli, bifidobacteria and short chain fatty acids in 2–5-year-old children. Microbial Ecology in Health and Disease, 28(1), 1298340. doi: 10.1080/16512235.2017.1298340

Hoyt, K.J. et al., 2019. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis. PLoS ONE, 14(3), e0214011. doi: 10.1371/journal.pone.0214011

Hunter, R.L., 2016. Tuberculosis as a three-act play: A new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis, 97, pp.8–17. doi: 10.1016/j.tube.2015.11.010

Jia, Z.L. et al., 2019. Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: Activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere, 227, pp.541–550. doi: 10.1016/j.chemosphere.2019.04.026

Jusnita, N. & Tridharma, W.S., 2019. Karakterisasi nanoemulsi ekstrak daun kelor (Moringa oleifera Lamk.). Jurnal Sains Farmasi & Klinis, 6(1), pp.16–24.

Kant, S., Gupta, H. & Ahluwalia, S., 2015. Significance of Nutrition in Pulmonary Tuberculosis. Critical Reviews in Food Science and Nutrition, 55(7), pp.955–963. doi: 10.1080/10408398.2012.679500

Kasolo, J.N. et al., 2010. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. Journal of Medicinal Plants Research, 4(9), pp.753–757. doi: 10.5897/JMPR10.492

Kemenkes RI., 2016a. Infodatin: Tuberkulosis Temukan Obari Sampai Sembuh. Kemenkes RI.

Kemenkes RI., 2016b. Regulation of the Minister of Health No. 67 on Tuberculosis Control Jakarta (Peraturan Menteri Kesehatan Nomor 67 Tentang Penanggulangan Tuberkulosis Jakarta). Kemenkes RI.

Kim, S.A. et al., 2019. Potential for prebiotics as feed additives to limit foodborne Campylobacter establishment in the poultry gastrointestinal tract. Frontiers in Microbiology, 10(91). doi: 10.3389/fmicb.2019.00091

Koethe, J.R. & von Reyn, C.F., 2016. Protein-calorie malnutrition, macronutrient supplements, and tuberculosis. International Journal of Tuberculosis and Lung Disease, 20(7), pp.857–863. doi: 10.5588/ijtld.15.0936

La Fata, G. et al., 2017. Recent development of prebiotic research—statement from an expert workshop. Nutrients, 9(12), 1376. doi: 10.3390/nu9121376

Leone, A. et al., 2015. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences, 16(6), pp.12791–12835. doi: 10.3390/ijms160612791

Mangwani, N., Singh, P.K. & Kumar, V., 2020. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. Journal of Ayurveda and Integrative Medicine, 11(4), pp.522–528. doi: 10.1016/j.jaim.2019.02.004

Mary, G.A., 2015. Moringa Oleifera Leaf Supplementation on Vitamin A Status of Children in Ada-East District of Ghana, University of Ghana.

Mishra, G. et al., 2011. Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharmacia Lettre, 3(2), pp.141-164.

Moyo, B. et al., 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), pp.12925–12933. doi: 10.5897/ajb10.1599

Munawarah, M. et al., 2019. Pengaruh penggunaan sediaan fixed dose combination (fdc) dibandingkan dengan tablet lepas obat anti-tuberkulosis terhadap peningkatan nilai sgpt dan sgot pada pasien tuberkulosis di balai besar kesehatan paru masyarakat makassar. Majalah Farmasi Dan Farmakologi, 23(1), pp.32–34.

Nakano, Y. et al., 2019. Development of a Novel Nano-emulsion Formulation to Improve Intestinal Absorption of Cannabidiol. Medical Cannabis and Cannabinoids, 2(1), pp.35–42. doi: 10.1159/000497361

Nfambi, J. et al., 2015. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats. Journal of Basic and Clinical Physiology and Pharmacology, 26(6), pp.603–611. doi: 10.1515/jbcpp-2014-0104

Nkya, J.W., Erasto, P., & Chacha, M. (2014). Antimycobacterial and cytotoxicity activities of Moringa oleifera Lam extracts (Vol. 2, Issue 9). www.usa-journals.com

Pal, A. et al., 2011. Influence of Moringa oleifera on pharmacokinetic disposition of rifampicin using HPLC-PDA method: A pre-clinical study. Biomedical Chromatography, 25(6), pp.641–645. doi: 10.1002/bmc.1494

Pari, L. & Kumar, N.A., 2002. Hepatoprotective Activity of Moringa oleifera on Antitubercular Drug-Induced Liver Damage in Rats. JOURNAL OF MEDICINAL FOOD, 5(3).

Puspitasari, A.D. & Proyogo, L.S., 2017. Perbandingan Metode Ekstraksi Maserasi dan Sokletasi Terhadap Kadar Fenolik Total Ekstrak Etanol Daun Kersen (Mungingia calabura). Cendekia Eksakta, 2(1), pp.1–8.

Saalu, L.C. et al., 2011. The hepato-protective potentials of Moringa oleifera Leaf Extract On Alcohol-Induced Hepato-toxicity in Wistar Rat. American Journal Biotechnology and Molecular Sciences. doi: 10.13140/RG.2.2.33221.76002

Sahoo, D. et al., 2015. Review on Nutritional and Pharmacological Potencies of Moringa Oleifera. European Journal of Pharmaceutical and Medical Research, 3(1), pp.150-155.

Sanchez-Codez, M. et al., 2020. Hepatitis in children with tuberculosis: A case report and review of the literature. BMC Pulmonary Medicine, 20(1). doi: 10.1186/s12890-020-01215-6

Shehu, A.I., Ma, X. & Venkataramanan, R., 2017. Mechanisms of Drug-Induced Hepatotoxicity. In Clinics in Liver Disease, 21(1), pp.35–54. doi: 10.1016/j.cld.2016.08.002

Starke, J.R., 2020. Tuberculin skin test versus the interferon-γ Release Assays: Out with the old, in with the new. Pediatrics, 145(1). doi: 10.1542/PEDS.2019-3021

Stohs, S.J. & Hartman, M.J., 2015. Review of the safety and efficacy of Moringa oleifera. Phytotherapy Research, 29(6), pp.796–804. doi: 10.1002/ptr.5325

Tayeb, H.H. & Sainsbury, F., 2018. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine, 13(19), pp.2507–2525. doi: 10.2217/nnm-2018-0088

Ter Beek, L. et al., 2019. Tuberculosis-Related Malnutrition: Public Health Implications. The Journal of infectious diseases, 220(2), pp.340–341. doi: 10.1093/infdis/jiz091

Thomas, T.A., 2019. Tuberculosis in Children. Thoracic surgery clinics, 29(1), pp. 109–121. doi: 10.1016/j.thorsurg.2018.09.009

Tostmann, A. et al., 2008. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. Journal of Gastroenterology and Hepatology (Australia), 23(2), pp.192–202. doi: 10.1111/j.1440-1746.2007.05207.x

Uwaifo, 2020. Evaluation of weight and appetite of adult wistar rats supplemented with ethanolic leaf extract of Moringa oleifera. Biomedical and Biotechnology Research Journal, 4(2), pp.137–140. doi: 10.4103/bbrj.bbrj_17_20

Van Crevel, R. et al., 2002. Decreased Plasma Leptin Concentrations in Tuberculosis Patients are Associated with Wasting and Inflammation. The Journal of Clinical Endocrinology & Metabolism, 87(2), pp.758-763. doi: 10.1210/jcem.87.2.8228

Vanden Driessche, K. et al., 2013. Immune vulnerability of infants to tuberculosis. Clinical and Developmental Immunology, 2013, 781320. doi: 10.1155/2013/781320

Wang, P. et al., 2016. Isoniazid metabolism and hepatotoxicity. Acta Pharmaceutica Sinica B, 6(5), pp.384–392. doi: 10.1016/j.apsb.2016.07.014

WHO, 2014. Guidance for national tuberculosis programmes on the management of tuberculosis in children. WHO.

WHO, 2017. Global tuberculosis report 2018. WHO.

Wright, R.J. et al., 2017. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants, 6(4). doi: 10.3390/plants6040048

Zarb, P. et al., 2012. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill, 17(46), 20316. doi: 10.2807/ese.17.46.20316-en.

Zhang, D. et al., 2020. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Frontiers in Microbiology, 11, 301. doi: 10.3389/fmicb.2020.00301



DOI: https://doi.org/10.22146/jtbb.68291

Article Metrics

Abstract views : 1933 | views : 1289

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)