Conservation, Phytoremediation Potential and Invasiveness Status of Bali Botanic Garden Aquatic Plant Collection
Farid Kuswantoro(1*)
(1) Research Center for Plant Conservation and Botanic Garden, Bali Botanic Garden, Indonesian Institute of Sciences
(*) Corresponding Author
Abstract
Bali Botanic Garden (BBG) aspires to conduct conservation and research of eastern Indonesian plant species, including the aquatic plant species. These were important as aquatic plant species could be ecologically threatened, beneficial or even dangerous. As scientific data of BBG aquatic plant species collection was limited, we proposed this study to provide researchers and garden managers with data to conduct research, collection and maintenance of the garden aquatic plant collection. The study was carried out by sourcing list of BBG collected plant species data for its aquatic plant species. Literatures study was then carried out to gain information regarding the plant species’ heavy metal phytoremediation, conservation and invasiveness status while data analysis was conducted descriptively. The study result showed that 38 collection numbers of aquatic plant species collected in BGG were placed in five sites within the garden with 94% of all the aquatic plants collection came from Lesser Sunda Islands. Eleven aquatic plants species were listed as Least Concern by IUCN Red List. Fourteen species of collected aquatic plants were proved to possessed phytoremediation potential toward numerous heavy metal pollutants, while six species were listed as an invasive alien plant species in Indonesia. All of the provided data should be enabled the botanic garden stakeholders to come up with ideas in the research and maintenance effort of BBG aquatic plant collection.
Keywords
Full Text:
PDFReferences
Akter, S., Afrin, R., Mia, M.Y. & Hossen, M.Z., 2014, Phytoremediation of Chromium (Cr) from Tannery Effluent by Using Water Lettuce (Pistia stratiotes), ASA University Review 8(2), 149-156.
Alkorta, I. & Garbisu, C., 2001, Phytoremediation of organic contaminants in soils, Bioresource technology 79(3), 273-276.
Alvarado, S., Guédez, M., Lué-Merú, M.P., Nelson, G., Alvaro, A., Jesús, A.C. & Gyula, Z., 2008, Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor), Bioresource Technology 99(17), 8436-8440.
Arora, A., Saxena, S. & Sharma, D.K., 2006, Tolerance and phytoaccumulation of chromium by three Azolla species, World Journal of Microbiology and Biotechnology 22(2), 97-100.
Arora, A., Sood, A. & Singh, P.K., 2004, Hyperaccumulation of cadmium and nickel by Azolla species, Indian Journal of Plant Physiology 9(3), 302-304.
Bareen, F. & Khilji, S., 2008, Bioaccumulation of metals from tannery sludge by Typha angustifolia L., African Journal of Biotechnology 7(18), 3314-3320.
Baroroh, F., Handayanto, E. & Irawanto, R., 2018, Fitoremediasi Air Tercemar Tembaga (Cu) Mengguanakan Salvinia molesta dan Pistia stratiotes Serta Pengaruhnya Terhadap Pertumbuhan Tanaman Brassica rapa, Jurnal Tanah dan Sumberdaya Lahan 5(1), 689-700.
Beentje, H.J. & Lansdown, R.V., 2018, Cyperus papyrus, The IUCN Red List of Threatened Species 2018: e.T164158A120152171, http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T164158A120152171.en., Downloaded on 12 August 2019.
Bilz, M., Kell, S.P., Maxted, N. & Lansdown, R.V., 2011, European Red List of Vascular Plants, Luxembourg: Publications Office of the European Union.
Darma, I.D.P., Priyadi, A. & Sujarwo, W., 2017, Analisis Vegetasi Tumbuhan Air Di Kawasan Tri Danau (Beratan, Buyan, Tamblingan) Bali, LIMNOTEK-Perairan Darat Tropis di Indonesia 24(1), 36-43.
Das, S., Goswami, S. & Talukdar, A.D., 2014, A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L., Bulletin of environmental contamination and toxicology 92(2), 169-174.
Ellison, J., Koedam, N.E., Wang, Y., Primavera, J., Jin Eong, O., Wan-Hong Yong, J. & Ngoc Nam, V., 2010, Acanthus ebracteatus, The IUCN Red List of Threatened Species 2010: e.T178832A7621003, http://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178832A7621003.en. Downloaded on 12 August 2019.
Farnese, F.S., Oliveira, J.A., Lima, F.S., Leão, G.A., Gusman, G.S. & Silva, L.C., 2014, Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic, Brazilian Journal of Biology 74(3), S108-S112.
George, G.T & Gabriel, J.J., 2017, Phytoremediation of Heavy Metals from Municipal Waste Water by Salvinia molesta Mitchell, Haya: Saudi J. Life Sci. 2(3), 108-115.
Gratão, P.L., Prasad, M.N.V., Cardoso, P.F., Lea, P.J. & Azevedo, R.A., 2005, Phytoremediation: green technology for the clean up of toxic metals in the environment, Brazilian Journal of Plant Physiology 17(1), 53-64.
Gupta, A.K. & Beentje, H.J., 2018, Azolla pinnata, The IUCN Red List of Threatened Species 2018: e.T168790A120142955, http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T168790A120142955.en, Downloaded on 12 August 2019.
Gupta, A.K. & Lansdown, R.V., 2018, Cyperus haspan, The IUCN Red List of Threatened Species 2018: e.T168969A1258665, http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T168969A1258665.en, Downloaded on 12 August 2019.
Gupta, A.K., 2011, Nymphaea pubescens, The IUCN Red List of Threatened Species 2011: e.T168878A6544567, http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168878A6544567.en, Downloaded on 12 August 2019.
Hadimuljono M.B., Sudarmonowati E., Widyatmoko D., Rukmana D., Witono J.R., Purnomo D.W., Solihah S.M., Puspaningtyas D.M., Atmawidjaja E.S. & Chusaini H.A., 2014, Roadmap pembangunan kebun raya non perkotaan tahun 2015-2019: Sebuah sinergi konservasi dan pembangunan ekonomi, Pusat Konservasi Tumbuhan Kebun Raya LIPI, Bogor. ISBN: 978-979-8539-59-6
Harguinteguy, C.A., Pignata, M.L. & Fernández-Cirelli, A., 2015, Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa, Ecological engineering 82, 512-516.
Harguinteguy, C.A., Schreiber, R. & Pignata, M.L., 2013, Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina), Ecological indicators 27, 8-16.
Heywood, V.H. & Sharrock, S., 2013, European Code of Conduct for Botanic Gardens on Invasive Alien Species, Council of Europe Strasbourg, Botanic Gardens Conservation International, Richmond, ISBN 10: 1-905164-48-3 ISBN 13: 978-1-905164-48-6.
Hu, C., Zhang, L., Hamilton, D., Zhou, W., Yang, T. & Zhu, D., 2007, Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.), Hydrobiologia 579(1), 211-218.
Hulme, P.E., 2011, Addressing the threat to biodiversity from botanic gardens, Trends in Ecology & Evolution 26(4),168-174.
Irawanto, R. & Mangkoedihardjo, S., 2015, Fitoforensik Logam Berat (Pb dan Cd) Pada Tumbuhan Akuatik (Acanthus ilicifolius and Coix lacryma-jobi), Jurnal Purifikasi 15(1), 53-66.
Irawanto, R., Hendrian, R. & Mangkoedihardjo, S., 2015, Konsentrasi Logam Berat (Pb dan Cd) pada Bagian Tumbuhan Akuatik Acanthus ilicifolius (Jeruju), Prosiding KPSDA, 1(1), SP003-022.
Ismail, S.N., Hamid, M.A. & Mansor, M., 2018, Ecological correlation between aquatic vegetation and freshwater fish populations in Perak River, Malaysia, Biodiversitas Journal of Biological Diversity 19(1), 279-284.
IUCN., 2019, The IUCN Red List of Threatened Species, Version 2019-2, ISSN 2307-8235, accessed 29th July 2019, from https://www.iucnRed List.org
Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S. & Leng, X., 2017, Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons, Scientific reports 7(1), 1-9.
Jha, K.K., 2013, Aquatic food plants and their consumer birds at Sandi Bird Sanctuary, Hardoi, Northern India, Asian Journal of Conservation Biology 2(1), 30-43.
Jomjun, N., Siripen, T., Maliwan, S., Jintapat, N., Prasak, T., Somporn, C. & Petch, P., 2011, Phytoremediation of arsenic in submerged soil by wetland plants, International journal of phytoremediation 13(1), 35-46.
Juffe Bignoli, D., 2011, Acanthus ilicifolius, The IUCN Red List of Threatened Species 2011: e.T168780A6536949, http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168780A6536949.en, Downloaded on 12 August 2019.
Kabeer, R., Varghese, R., Kannan, V.M., Thomas, J.R. & Poulose, S.V., 2014, Rhizosphere bacterial diversity and heavy metal accumulation in Nymphaea pubescens in aid of phytoremediation potential, Journal of Bioscience & Biotechnology 3(1), 89-95.
Kaewtubtim, P., Meeinkuirt, W., Seepom, S. & Pichtel, J., 2016, Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand, Applied Ecology and Environmental Research 14(1), 367-382.
Karuppasamy, S., Rao, M.L.V., Beentje, H.J. & Lansdown, R.V., 2019, Nymphoides indica, The IUCN Red List of Threatened Species 2019: e.T168916A120213259, http://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T168916A120213259.en, Downloaded on 12 August 2019.
Keller, R.P., Masoodi, A. & Shackleton, R.T., 2018, The impact of invasive aquatic plants on ecosystem services and human well-being in Wular Lake, India, Regional environmental change 18(3), 847-857.
Kuehne, L.M., Olden, J.D. & Rubenson, E.S., 2016, Multi-trophic impacts of an invasive aquatic plant, Freshwater Biology 61(11), 1846-1861.
Kumari, S., Kumar, B. & Sheel, R., 2017, Biological control of heavy metal pollutants in water by Salvinia molesta, Int J Curr Microbiol App Sci 6(4), 2838-2843.
Lacoul, P. & Freedman, B., 2006, Environmental influences on aquatic plants in freshwater ecosystems, Environmental Reviews 14(2), 89-136.
Lansdown, R.V., 2013, Schoenoplectus mucronatus, The IUCN Red List of Threatened Species 2013: e.T164086A13553540, http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T164086A13553540.en, Downloaded on 12 August 2019.
Lansdown, R.V., 2014, Acorus calamus, The IUCN Red List of Threatened Species 2014: e.T168639A43116307, http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T168639A43116307.en, Downloaded on 12 August 2019.
Lansdown, R.V., 2019, Pistia stratiotes, The IUCN Red List of Threatened Species 2019: e.T168937A120126770, http://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T168937A120126770.en, Downloaded on 12 August 2019.
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M., 2000, 100 of the world's worst invasive alien species: a selection from the global invasive species database (Vol. 12),Invasive Species Specialist Group, Auckland
Lu, D., Huang, Q., Deng, C. & Zheng, Y., 2018, Phytoremediation of Copper Pollution by Eight Aquatic Plants, Polish Journal of Environmental Studies 27(1), 175-181
Ma, Q., Peng, Y., Zhang, J. & Ji, M., 2019, Enrichment Capacity of Lead in Water by Aquatic Plants, Polish Journal of Environmental Studies 28(4), 2745-2754.
Mandakini, L.L.U., Bandara, N.J.G.J. & Gunawardana, D., 2016, A study on the Phytoremediation Potential of Azolla pinnata under laboratory conditions, Journal of Tropical Forestry and Environment 6(1), 36-49.
Meeinkuirt, W., Kaewtubtim, P., Seepom, S. & Pichtel, J., 2017, Metal uptake and accumulation by mangrove plant species in Pattani Bay, Thailand, Proceedings of the 3rd World Congress on New Technologies (NewTech'17).
Mishra, K.K., Rai, U.N. & Prakash, O., 2007, Bioconcentration and phytotoxicity of Cd in Eichhornia crassipes, Environmental monitoring and assessment 130(1-3), 237-243.
Mishra, V.K. & Tripathi, B.D., 2009, Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes), Journal of Hazardous Materials 164(2-3), 1059-1063.
Mishra, V.K., Tripathi, B.D. & Kim, K.H., 2009, Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent, Journal of Hazardous Materials 172(2-3), 749-754.
Molisani, M.M., Rocha, R., Machado, W., Barreto, R.C. & Lacerda, L.D., 2006, Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil, Brazilian Journal of Biology 66(1A), 101-107.
Mueller-Dombois, D & Ellenberg, H., 2016, Ekologi Vegetasi Tujuan dan Metode, Alih Bahasa K. Kartawinata & R. Abdulhadi LIPI Press and Yayasan Pustaka Obor Indonesia, pp. 236-237, Jakarta-Indonesia.
Mufarrege, M.M., Hadad, H.R. & Maine, M.A., 2010, Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous, Archives of environmental contamination and toxicology 58(1), 53-61.
Munandar, A.A., Kusuma, Z., Prijono, S. & Irawanto, R., 2018, Fitoremediasi Air Tercemar Timbal (Pb) Dengan Lemna minor Dan Ceratophyllum demersum Serta Pengaruhnya Terhadap Pertumbuhan Lactuca sativa, Jurnal Tanah dan Sumberdaya Lahan 5(2), 867-874.
Oktavia, G.A.E., Darma, I.D.P. & Sujarwo, W., 2017, Studi etnobotani tumbuhan obat di kawasan sekitar Danau Buyan–Tamblingan, Bali, Buletin Kebun Raya 20(1), 1-16.
Paiva, L.B., de Oliveira, J.G., Azevedo, R.A., Ribeiro, D.R., da Silva, M.G. & Vitória, A.P., 2009, Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+, Environmental and Experimental Botany 65(2-3), 403-409.
Peuke, A.D. & Rennenberg, H., 2005, Phytoremediation, EMBO reports 6(6), 497-501.
Purnomo, D.W., Magandhi, M., Kuswantoro, F., Risna, R.A. & Witono, J.R., 2015, Pengembangan koleksi tumbuhan kebun raya daerah dalam kerangka strategi konservasi tumbuhan di Indonesia, Buletin Kebun Raya 18(2), 111-124.
Puspitasari, D. & Irawanto, R., 2016, Fitoremediasi Limbah Domestik Dengan Tumbuhan Akuatik Mengapung Di Kebun Raya Purwodadi, Prosiding Seminar Nasional FTP UB Malang, 1-10.
Rai, P.K. & Tripathi, B.D., 2009, Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India, Environmental Monitoring and Assessment 148(1-4), 75-84.
Rai, P.K., 2008, Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata, International journal of phytoremediation 10(5), 430-439.
Ranjitha J., Raj, A., Kashyap, R., Vijayalakshmi, S., & Donatus, M., 2016, Removal of heavy metals from industrial effluent using Salvinia molesta, Int. J. ChemTech. Res. 9(5), 608- 613.
Saleh, H.M., 2012, Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides, Nuclear Engineering and Design 242, 425-432.
Serang, L.K.O., Handayanto, E. & Rindyastuti, R., 2018, Fitoremediasi Air Tercemar Logam Kromium Dengan Menggunakan Sagittaria lancifolia dan Pistia stratiotes Serta Pengaruhnya Terhadap Pertumbuhan Kangkung Darat (Ipomea reptans), Jurnal Tanah dan Sumberdaya Lahan 5(1), 739-746.
Setyawati, T., Narulita, S., Bahri I.P., & Raharjo G.T., 2015, A Guide Book to Invasive Plant Species in Indonesia. in T. Partomihardjo, S. Tjitrosoedirdjo & Sunaryo (eds.). Research, Development and Innovation Agency. Ministry of Environment and Forestry. Bogor-Indonesia. ISBN: 978-979-8452-66-6
Skinner, K., Wright, N. & Porter-Goff, E., 2007, Mercury uptake and accumulation by four species of aquatic plants, Environmental pollution 145(1), 234-237.
Sood, A., Uniyal, P.L., Prasanna, R. & Ahluwalia, A.S., 2012, Phytoremediation potential of aquatic macrophyte, Azolla, Ambio, 41(2), 122-137.
Sumiahadi, A. & Acar, R., 2018, A review of phytoremediation technology: heavy metals uptake by plants, IOP Conference Series: Earth and Environmental Science 142(1), 1-9.
Sun, H., Wang, Z., Gao, P. & Liu, P., 2013, Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater, Acta physiologiae plantarum 35(2), 355-364.
Talebi, M., Tabatabaei, B.E.S. & Akbarzadeh, H., 2019, Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes, Chemosphere 230, 488-497.
The Plant List., 2013, The Plant List a Working List of All Plant Species, Version 1.1. Published on the Internet, accessed 29th July 2019 from http://www.theplantlist.org/
Tjitrosoedirdjo, S.S., 2005, Inventory of the invasive alien plant species in Indonesia, BIOTROPIA-The Southeast Asian Journal of Tropical Biology 25, 60-73.
Tjitrosoedirdjo, S.S., Mawardi I., & Tjitrosoedirdjo S., 2016, 75 Important Invasive Alien Plant Species in Indonesia, SEAMEO BIOTROP. Bogor-Indonesia. ISBN: 978-979-8275-49-4.
Vasavi, A., Usha, R. & Swamy, P.M., 2010, Phytoremediation–an overview review, J Ind Pollut Control 26(1),83-88.
Verma, V.K., Tewari, S. & Rai, J.P.N., 2008, Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes, Bioresource Technology 99(6), 1932-1938.
Wahwakhi, S., Kusmana, C. & Iswantini, D., 2017, Potency of Acanthus ilicifolius as phytoremediation agent against copper pollution in Jagir River estuary, Wonorejo Village, Surabaya, Indonesia, Aquaculture, Aquarium, Conservation & Legislation Bioflux 10(5), 1186-1197.
Zhuang, X., 2011, Typha angustifolia, The IUCN Red List of Threatened Species 2011: e.T164199A5772487, http://dx.doi.org/10.2305/IUCN.UK.2011-1.RLTS.T164199A5772487.en, Downloaded on 12 August 2019.
DOI: https://doi.org/10.22146/jtbb.49312
Article Metrics
Abstract views : 172837 | views : 2770Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)