ROBUST ESTIMATION IN REGRESSION MODEL FOR HANDLING OUTLIER AND HETEROSCEDASTICITY

https://doi.org/10.22146/jmt.48667

Arlinda Amalia Dewayanti(1*)

(1) Gadjah Mada University
(*) Corresponding Author

Abstract


Regression analysis is a method in statistics to determine the relationship between the dependent variable and independent variables. The method used in the estimation of parameters in the model is Ordinary Least Square (OLS). This method is very sensitive to deviations assumptions on the data. The assumption is often not met is assuming heteroscedasticity. One cause of non-fulfillment of this assumption because there are outlier in the data. Therefore, another method used to handle the data outlier. The solve of this case is the robust regression method using estimates Least Trimmed Square (LTS) and Least Median Square (LMS). This paper will be discussed handling outlier and heteroscedasticity by comparing both the robust estimation by OLS seen from the residual standard error, standard error, and the regression coefficient. The results obtained from the Central Java province GRDP data in 2016-2017, show that data containing the direction y outlier, the method of estimating at least the median square is better to use compared to other methods.

Full Text:

PDF Dewayanti


References

Baltagi, B.H, Econometrics (4th ed), Verlag Berlin Heidelberg, Springer, 2008

Chen, C., Robust Regression and Outlier Detection with the ROBUSTREG Procedure, 27, pp.265-270, 2002


Cook, R.D. dan Weisberg, S., Diagnostics for Heteroscedasticity in Regression. Biometrika, 70, pp. 110, 1983

Draper, N. dan Smith, H., Analisis Regresi Terapan Edisi Kedua, Gramedia Pustaka Utama, Jakarta, 1992

Mashitah, Wibowo, A. dan Indriani, D., Metode Robust Regression on Ordered Statistics (ROS)
pada Data Tersensor Kiri dengan Outlier. Jurnal Biometrika dan Kependudukan, 02, pp. 148157, 2013.

Qudratullah, M.F., Analisis Regresi Terapan Teori Contoh Kasus dan Aplikasi dengan SPSS, ANDI, Yogyakarta, 2013

Riani, M., Atkinson, A.C., dan Torti, F., Robust Methods For Heteroskedastic Regression, Computational Statistics and Data Analysis, 104, pp. 209222, 2016.

Rousseeuw, P.J., Robust Regression and Outlier Detection, Wiley and Sons, New York, 1987.

Sembiring, Analisis Regresi Edisi Kedua,Institute Teknologi Bandung, Bandung, 2003.

Soemartini, Pencilan (Outlier), Universitas Padjajaran, Bandung, 2007.



DOI: https://doi.org/10.22146/jmt.48667

Article Metrics

Abstract views : 377 | views : 3959

Refbacks

  • There are currently no refbacks.



Copyright of Jurnal Matematika Thales ISSN 2715-1891 (Print).

Jumlah Kunjungan: View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JMT Indexed by: