Experimental Investigation of Premixed LPG-Air Emission Profile During Flame Impingement Process

https://doi.org/10.22146/jmdt.97745

Imam Israq(1), Shakti Nuryadin(2*), Jayan Sentanuhady(3)

(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(2) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


In the present study, emission profile of premixed 90% propane-10% butane flame, namely LPG (Liquified Petroleum Gas) was experimentally investigated. The fuel was mixed in premixed chamber which then ignited through 2 mm nozzle diameter. The fuel flow was controlled via solenoid valve installed upstream the burner body. This valve is synchronized with high-speed camera and thus, the flame kernel propagation can be captured.  In this experiment, the effect of equivalence ratio, initial pressure, and separation distance (H/D) on combustion emissions and flames that produced from a mixture of LPG-air fuel was investigated. The flue gas analyser probe was installed inside the contained flame impingement test allowing to record CO, CO2, and unburnt HC data. The variation of the equivalence ratio used in this study are 0.8, 1.0, and 1.2. For variations in initial pressure used, 1 bar, 1.2 bar, and 1.4 bar. Variation of separation distance (H/D) that will be used are 4.5, 5.5, and 6.5. The result of this experiment shows that CO increases with increase in equivalence ratio, and initial pressure of premixed gas. For separation distance CO level decreases as the plate progressively moves away from the nozzle. CO and CO2 concentration increases as the equivalence ratio and initial pressure increases. The highest average CO concentration was 183 ppm that was found in ER 1.2 with the lowest H/D. Highest mean CO2 concentration was found in the same ER with the highest H/D, which was 4267 ppm.

Keywords


premixed flame, flame impingement, emission profile

Full Text:

PDF


References

C. He, J. Jiang, M. Sun, Y. Yu, K. Liu, dan B. Zhang, 2022. Analysis of the NH3 blended ratio on the impinging flame structure in non-premixed CH4/NH3/air combustion. Fuel, Vol. 330, 125559.

D. P. Mishra, 2004. Emission studies of impinging premixed flames. Fuel, Vol. 83, pp. 1743–1748.

E. C. Okafor, M. Tsukamoto, A. Hayakawa, K.D.K.A. Somarathne, T. Kudo, T. Tsujimura, dan H. Kobayashi, 2021. Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall. Proceedings of the Combustion Institute, Vol. 38, pp. 5139–5146.

G. K. Malikov, D. L. Lobanov, K. Y. Malikov, V. G. Lisienko, R. Viskanta, dan A. G. Fedorov, 2021. Direct flame impingement heating for rapid thermal materials processing. International Journal of Heat and Mass Transfer, Vol. 44, pp. 1751-1758.

H. B. Li, H. S. Zhen, C. W. Leung, dan C. S. Cheung, 2010. Effects of plate temperature on heat transfer and emissions of impinging flames. International Journal of Heat and Mass Transfer, Vol. 53, pp. 4176–4184.

L. Fan, B. Savard, S. Carlyle, M. Nozari, R. Naaman, B. Fond, dan P. Vena, 2023. Simultaneous stereo‐PIV and OH×CH2O PLIF measurements in turbulent ultra lean CH4/H2 swirling wall‐impinging flames. Proceedings of the Combustion Institute, Vol. 39, pp. 2179-2188.

L. L. Dong, C. W. Leung, dan C. S. Cheung, 2002. Heat transfer characteristics of premixed butane/air flame jet impinging on an inclined flat surface. Heat and Mass Transfer, Vol. 39, pp. 19–26.

S. Chander dan A. Ray, 2005. Flame impingement heat transfer: A review. Energy Conversion and Management, Vol. 46, pp. 2803–2837.

H. Sakai, S. Sato, S. Mori, S. Nogawa, dan K. Nakatani, 2020. Analysis of unburned hydrocarbon generated from wall under lean combustion. SAE Technical Paper 2020-01-0295, p.13.

T. Foat, K.P. Yap dan Y. Zhang, 2001. The visualization and mapping of turbulent premixed impinging flames. Combustion and Flame, Vol. 125, pp. 839-851.

Y. Chien, D.E. Martin, dan D.D. Rankin, 2016. CO emission from an impinging non-premixed flame. Combustion and Flame, Vol. 174, pp. 16-24.

Y. Zhang, K.N.C. Bray, 1999. Characterization of impinging jet flames. Combustion and Flame, Vol. 116, pp. 671-674.

Z. Shao, J. Jiang, dan J. Lin, 2018. Feasibility study on direct flame impingement heating applied for the solution heat treatment, forming and cold die quenching technique. Journal of Manufacturing Processes, Vol. 36, pp. 398–404.

Z. Wei, H. Liu, Z. Chen, Z. Liu, dan H. Zhen, 2022. Quenching distance, wall heat flux and CO/NO thermochemical states in the wall vicinity of laminar premixed biogas-hydrogen impinging flame. Fuel, Vol. 307, p. 121849.



DOI: https://doi.org/10.22146/jmdt.97745

Article Metrics

Abstract views : 502 | views : 317

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.