Studi Eksperimental Pola Aliran Dua Fasa dan Karakteristik Slug pada Saluran Horizontal Microchannel Penampang Persegi
M. Rian Alif Madani(1*), Haslinda Kusumaningsih(2), Deendarlianto Deendarlianto(3)
(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada, Indonesia
(2) Departemen Teknik Mesin, Fakultas Teknik, Universitas Brawijaya, Malang, Indonesia
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada, Indonesia
(*) Corresponding Author
Abstract
Pada peradaban saat ini, telah terjadi peningkatan yang signifikan dalam perkembangan dan penerapan teknologi saluran microchannel dikarenakan keunggulan serta manfaatnya. Salah satu aplikasinya adalah liquid cooling system yang terdapat pada CPU atau GPU komputer dan sistem pendingin reaktor mikro. Seiring berjalannya perkembangan teknologi, kebutuhan sistem pendingin pada ukuran yang lebih kecil seperti pada telepon genggam, tablet, dan laptop menjadi tantangan tersendiri. Studi eksperimental aliran dua fasa pada saluran microchannel dilakukan terhadap karakteristik pola aliran untuk fluida newtonian dan perbandingannya secara spesifik dengan fluida non-newtonian untuk karakteristik pola aliran yang terbentuk. Saluran micro-fluidic chip berpenampang persegi dengan ukuran 0,8 mm x 0,8 mm dilewati oleh fluida kerja cairan newtonian berupa Air dan non-newtonian berupa Carboxymethyl Cellulose (CMC) konsentrasi 0,2% serta 0,4% dengan nitrogen sebagai fluida kerja gas. Kecepatan superfisial cairan yang digunakan adalah pada rentang JL= 0,05 – 1 m/s dan gas JG = 0,07 − 8,594 m/s. Differential pressure transducer dan high speed camera digunakan untuk menganalisis fenomena yang terjadi. Metode image processing digunakan dengan aplikasi MATLAB R2021a. Pola aliran yang teridentifikasi adalah bubbly, slug, slug-churn, churn, wavy-annular, dan slug-annular. Karakteristik slug seperti geometri dan waktu pembentukan dianalisa dengan membandingkan fluida kerja Air, CMC 0,2%, dan CMC 0,4% serta pengaruh variasi JG dan JL.
Keywords
Full Text:
PDFReferences
[1]. D. B. Weibel and G. M. Whitesides, “Applications of microfluidics in chemical biology,” Current Opinion in Chemical Biology, vol. 10, no. 6. pp. 584–591, Dec. 2006. doi: 10.1016/j.cbpa.2006.10.016.
[2]. L. Wojtan, R. Revellin, and J. R. Thome, “Investigation of saturated critical heat flux in a single, uniformly heated microchannel,” Experimental Thermal and Fluid Science, vol. 30, no. 8, pp. 765–774, Aug. 2006, doi: 10.1016/j.expthermflusci.2006.03.006.
[3]. M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, and J. J. Heiszwolf, “Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels,” in Chemical Engineering Science, Nov. 2005, vol. 60, no. 22, pp. 5895–5916. doi: 10.1016/j.ces.2005.03.022.
[4]. K. Yamamoto and S. Ogata, “Drag reduction of slug flows in microchannels by modifying the size of T-junctions,” International Journal of Multiphase Flow, vol. 62, pp. 67–72, Jun. 2014, doi: 10.1016/j.ijmultiphaseflow.2014.02.011.
[5]. C. Choi and M. Kim, “Flow pattern based correlations of two-phase pressure drop in rectangular microchannels,” International Journal of Heat and Fluid Flow, vol. 32, no. 6, pp. 1199–1207, Dec. 2011, doi: 10.1016/j.ijheatfluidflow.2011.08.002.
[6]. S. Saisorn and S. Wongwises, “Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel,” Experimental Thermal and Fluid Science, vol. 69, pp. 158–168, Dec. 2015, doi: 10.1016/j.expthermflusci.2015.07.021.
[7]. Z. C. Yang, Q. C. Bi, B. Liu, and K. X. Huang, “Nitrogen/non-Newtonian fluid two-phase upward flow in non-circular microchannels,” International Journal of Multiphase Flow, vol. 36, no. 1, pp. 60–70, Jan. 2010, doi: 10.1016/j.ijmultiphaseflow.2009.07.011.
[8]. M. H. Mansour, A. Kawahara, and M. Sadatomi, “Experimental investigation of gas-non-Newtonian liquid two-phase flows from T-junction mixer in rectangular microchannel,” International Journal of Multiphase Flow, vol. 72, pp. 263–274, Jun. 2015, doi: 10.1016/j.ijmultiphaseflow.2015.02.019.
[9]. A. Kawahara, Y. Yonemoto, and Y. Arakaki, “Pressure Drop for Gas and Polymer Aqueous Solution Two-Phase Flows in Horizontal Circular Microchannel,” Flow, Turbulence and Combustion, vol. 105, no. 4, pp. 1325–1344, Nov. 2020, doi: 10.1007/s10494-020-00127-z.
[10]. R. K. Shah and A. L. London, “Rectangular Ducts,” in Laminar Flow Forced Convection in Ducts, Elsevier, 1978, pp. 196–222. doi: 10.1016/b978-0-12-020051-1.50012-7.
[11]. K. Feng and H. Zhang, “Pressure drop and flow pattern of gas-non-Newtonian fluid two-phase flow in a square microchannel,” Chemical Engineering Research and Design, vol. 173, pp. 158–169, Sep. 2021, doi: 10.1016/j.cherd.2021.07.010.
[12]. W. Kozicki, C. H. Chou, and C. Tiu, “Non-Newtonian flow in ducts of arbitrary cross-sectional shape,” Pergamon Press Ltd, 1966.
[13]. R. Revellin, B. Agostini, and J. R. Thome, “Elongated bubbles in microchannels. Part II: Experimental study and modeling of bubble collisions,” International Journal of Multiphase Flow, vol. 34, no. 6, pp. 602–613, Jun. 2008, doi: 10.1016/j.ijmultiphaseflow.2007.07.006.
[14]. R. W. Lockhart and R. C. Martinelli, “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes,” Chem Eng Prog, pp. 39–48, 1949.
[15]. D. Chisholm, “A THEORETICAL BASIS FOR THE LOCKHART-MARTINELLI CORRELATION FOR TWO-PHASE FLOW,” Pergamon Press Ltd, 1967.
[16]. D. Chisholm, “A THEORETICAL BASIS FOR THE LOCKHART-MARTINELLI CORRELATION FOR TWO-PHASE FLOW,” Pergamon Press Ltd, 1967.
[17]. K. Mishima and T. Hibiki, “SOME CHARACTERISTICS OF AIR-WATER TWO-PHASE FLOW IN SMALL DIAMETER VERTICAL TUBES,” 1996.
[18]. Y. W. Hwang and M. S. Kim, “The pressure drop in microtubes and the correlation development,” International Journal of Heat and Mass Transfer, vol. 49, no. 11–12, pp. 1804–1812, Jun. 2006, doi: 10.1016/j.ijheatmasstransfer.2005.10.040.
[19]. K. Mishima and T. Hibiki, “SOME CHARACTERISTICS OF AIR-WATER TWO-PHASE FLOW IN SMALL DIAMETER VERTICAL TUBES,” 1996.
[20]. Y. W. Hwang and M. S. Kim, “The pressure drop in microtubes and the correlation development,” International Journal of Heat and Mass Transfer, vol. 49, no. 11–12, pp. 1804–1812, Jun. 2006, doi: 10.1016/j.ijheatmasstransfer.2005.10.040.
DOI: https://doi.org/10.22146/jmdt.78968
Article Metrics
Abstract views : 1110 | views : 1232Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.