Fabrikasi dan Surface Finishing Minitube dengan Mesin Bubut untuk Bahan Baku Ring Jantung
Eko Pujiyulianto(1*), S Suyitno(2)
(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(2) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Penelitian ini bertujuan untuk mengetahui unjuk kerja proses pembuatan minitube dan proses surface finishing dengan menggunakan mesin bubut sebagai bahan baku ring jantung. Urutan proses pembuatan minitube adalah proses boring dan face turning, Proses boring dan face turning harus dilakukan secara berurutan, setelah proses boring dan face turning dilakukan proses pengamplasan dan mechanical polishing sebagai proses surface finishing. Hasil percobaan unjuk kerja berhasil mendapatkan minitube dengan ukuran diameter dalam 3 mm, diameter luar 3,5 mm (±0,1) dan panjang 30 mm., harga kekasaran permukaan (Ra) hasil proses surface finishing adalah 0,04 µm untuk AISI 316 L dan 0,1 µm untuk CP-Titanium grade 2. Harga kekasaran (Ra) permukaan yang dihasilkan dari proses surface finishing masuk kedalam standar harga kekasaran permukaan (Ra) maximum ring jantung yaitu 0,6 µm. Hasil penelitian menunjukan bahwa proses pembuatan minitube untuk bahan baku ring jantung dapat dilakukan dengan menggunakan mesin bubut, dan Proses surface finishing dapat digunakan sebagai prelimanary proses untuk menghaluskan permukaan minitube sebelum dilakukan proses fabrikasi ring jantung.
Full Text:
PDFReferences
Catalano, G., Demir, A. G., Furlan, V., & Previtali, B. (2017). Use of Sheet Material for Rapid Prototyping of Cardiovascular rings. Procedia Engineering : 17 th International Confrence on Sheet metal SHEMET 17, 183, 194-199.
Demir, A. G., Previtali, B., & Biffi, C. A. (2013). Fiber Laser Cutting and Chemical Etching of AZ31 for Manfacturing Biodegradable Rings. Advance in Material Science and Engineering, 2013, 1-10.
Dong, J., Liao, L., Tan, Z., Fan, Z., Li, S., & Lu, Z. (2013). A boresorbable Cardiovascular Ring Prepared From L-Lactide, Trimethylene Carbonate and Glycolide Terpolymers. Polymer Engineering and Science, 1418-1426. doi:10.1002/pen.23662
Fang, G., Ai, W. J., Leeflang, S., Duszczyk, J., & Zhou, J. (2013). Multipass Cold Drawing of Magnesium Alloy Minitubes for Biodegradable Vascular Rings. Materials Science and Engineering, 33, 3481-3488.
Ge, Q., Vedani, M., & Vimercati, G. (2012). Extrusion of Magnesium Tubes for Biodegradable Ring Precusors. Materials and Manufacturing Processes, 27(2), 140-146.
Gocke, C., Grabow, N., Schultze, C., Sternberg, K., Schmidt, W., & Schmitz, K. P. (Nov 2008). Coating Homogenity in the Manufacture of Drug Eluting Stens. 4th European Confrence of the International Federation for Medical and Biological Engineering (hal. 2241-2246). Belgium: Springer Verlag.
Hassel, T., Bach, F. W., & Golovko, A. N. (2007). Production and Properties of Small Tubes Made from MgCa0,8 for application as Ring in Biomedical Science. Proceedings of 7th Internatonal Confrence on Magnesium Alloys and Their Applications . Dresden.
Hermawan, H., & Mantovani, D. (2013). Process of prototyping Coronary Ring from Biodegradable Fe-Mn Alloys. Acta Biomateriala, 9(10), 8585-8592.
Huang, B., Gale, D. C., & Gueriguian, V. J. (2009, June 11). United State Paten No. US 20090146348A1.
Lampman, S. (1994). Wrought Titanium and Titanium Alloy. Dalam ASM Metal Handbook Vol 2 : Non Ferous Alloy. America: ASM International.
Li, J., Yang, Y., ren, Y., Dong, J., & Yang, K. (2017). Effect of Cold Deformation on Corrosion Fatigue Behavior of Nickel-Free High Nitorgen Austenitic Stainless Steel for Coronary Ring Application. Material Science and Technology, 34(4), 660-665.
Mazinani, A. (2014). Surface Modification Treatment of cardiovascular Ring. Milan: Department of Chemistry, Materials and Chemical Engineering, Politecnico Di Milano.
Morajev, M., & Mantovani, D. (2011). Biodegradable Metals for Cardiovascular Ring Application : Interests and New Opportunities. International Journal of Molecular Science, 12, 4250-4270.
Nordin, J. A., Nasution, A. K., & Hermawan, H. (2013). Can the Current ring Manufacturing Process be Used for Making Metallic Biadegradable Rings? Advanced Materials Research, 746, 416-421.
Pilliar, R. M. (2009). Austenitic Stainless Steel 316 L. Dalam Metallic Biomaterials. Springer Science .
Ratner, B. R. (2004). Biomaterial Science " An Introduction to Materials in Medicine". Amerika: Elesevier Academic Press.
Raval, A., Choubey, A., Engineer, C., & Kothwala, D. (2005). Surface Conditioning of 316LVM Slotted Tube Cardiovascular Rings. Journal of Biomaterial Applications, 19(3), 197-213.
Saraf, A. R., & Yadav, A. P. (2018). Fundamental of Bare Metal Ring. Dalam Functionalized Cardiovascular Ring (hal. 27-28). Amerika: Woodhead Publishing.
Sojitra, P. (2010). Electropolishing of 316 L Stainless Steel Cardiovascular Ring : An Investigation of Material Removal, Surface Roughness and Corrosion Behaviour. Trends Biometer, 23(3), 115-121.
Stoeckel, D., Bonsignore, C., & Duda, S. (2002). A Survey of Ring Design. Minim. Invansive Ther. Allied Technol., 11(4), 137-147.
Suryawan, D. (2017). Desain, Pemodelan, dan Pembuatan Prototype Ring Jantung Menggunakan Electrical Discharge Machining (EDM). Yogyakarta: Fakultas Teknik UGM.
Tontowi, A., Adani, R. A., Setyaningsih, I. S., & Taufik, N. (2014). Analysis of User Acceptibility Factors for Optimum Design of Coronary Ring. International Confrence on Biomedical Engineering, Technology, and Applications, 1, hal. 1-6. Yogyakarta.
DOI: https://doi.org/10.22146/jmdt.46743
Article Metrics
Abstract views : 2842 | views : 2826Refbacks
- There are currently no refbacks.