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ABSTRACT In this paper, the dynamic response of rigid foundations of arbitrary shape embedded in multi-layered poroelastic 
soils subjected to time-harmonic horizontal loading is presented. The soil-structure interaction problem is investigated by employing 
a discretization technique and flexibility equations based on the influence functions obtained from an exact stiffness matrix scheme. 
The present solution scheme is verified with relevant existing solutions of rigid foundations on homogeneous elastic and poroelastic 
media. A selected set of numerical results are illustrated to portray the influence of various parameters, namely, frequency of 
excitation, poroelastic material parameters, foundation shapes, embedded depth, and the supporting soil systems, on non-
dimensional horizontal compliances of rigid foundations.  
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1 INTRODUCTION 

An important class of problems encountered in 
geotechnical engineering, earthquake engineering, 
and offshore engineering is concerned with soil-
structure interaction analysis of a foundation under 
horizontal dynamic loading from an earthquake, 
wind, ocean wave, and machine vibration. In the past, 
several researchers employed a variety of techniques 
to study horizontal vibrations of rigid foundations. 
For example, (Luco and Westmann (1972) considered 
the case of a rigid strip bonded to a homogenous 
elastic medium and subjected to time-harmonic 
loading. Coupled rocking and sliding responses of a 
rectangular plate were investigated by (Urlich and 
Kuhlemeyer (1973), who employed a finite element 
method with an energy absorbing boundary. Wong 
and Luco (1976) presented a time-harmonic 
horizontal motion of a rectangular foundation resting 
on an elastic half-space. In addition, horizontal 
vibrations of rectangular foundations bonded to an 
elastic medium were also studied by Wong and Luco 
(1978). Generally, geomaterials are two-phased 
materials consisting of a solid skeleton with voids 
filled with water. Such materials are commonly 
known as poroelastic materials, and they are 
considered to be a more suitable representation of 
soils and rocks than ideal elastic materials.  

The theory of elastic wave propagations in a 
poroelastic medium was presented by Biot (1956) by 
adding the inertia terms to his quasi-static theory 
(Biot, 1941). For horizontal vibrations of foundations 
in poroelastic soils, Kassir and Jimin, 1988) (1988) 
presented the case of rigid strip foundation on a 
poroelastic half-plane. Horizontal vibrations of a 
rigid circular foundation under time-harmonic 
loading resting on a poroelastic half-space were 
presented by Jin and Liu (2000). In addition, He and 
Wang (2013) and He and Zhou (2015) studied 
horizontal vibrations of an underwater rigid disk on a 
poroelastic half-space. All existing works mentioned 
above are concerned with horizontal vibrations of 
foundations on homogeneous poroelastic soils. 
However, natural soil profiles normally consist of a 
number of soil layers with different thicknesses and 
material properties. A review of literature indicates 
that dynamic interaction between a rigid foundation 
subjected to horizontal loading and multi-layered 
poroelastic soils has never been reported in the past. 

In this paper, the dynamic response of a rigid 
foundation, subjected to time-harmonic horizontal 
loading and embedded in multi-layered poroelastic 
soils (see Figure 1), is presented. The foundation is 
assumed to be massless, and fully permeable. In 
addition, it is perfectly bonded to the supporting 
soils. The soil medium under consideration consists 
of a number of poroelastic layers of different 
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thicknesses and material properties, and each layer is 
governed by Biot’s theory of poroelastodynamics. A 
computer program based on the proposed solution 
scheme has been developed, and its accuracy has 
been verified by comparing with existing studies on 
horizontal vibrations of rigid foundations. Selected 
numerical results are presented to demonstrate the 
influence of foundation shape, embedded depth, 
poroelastic material properties, and the supporting 
soil systems on horizontal compliances of rigid 
foundations.  

 
Figure 1. Schematic of rigid foundation in multi-layered 
poroelastic soils under horizontal loading. 

2 BASIC EQUATIONS 

Consider a multi-layered poroelastic half-space with a 
Cartesian coordinate system (i = x, y, z) defined as 
shown in Figure 1. Let 𝑢௜(𝑥, 𝑦, 𝑧, 𝑡) and 𝑤௜(𝑥, 𝑦, 𝑧, 𝑡) 
denote the average displacement of the solid matrix 
and the fluid displacement relative to the solid matrix 
in the i-direction (i = x, y, z) respectively. The 
constitutive relation of a poroelastic material can be 
expressed as in Equation 1 (Biot, 1941), 

𝜎௜௝ = 2𝜇𝜀௜௝ + 𝜆𝛿௜௝𝜀௞௞ − 𝛼𝛿௜௝𝑝𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (1a) 

𝑝 = −𝑀൫𝛼𝜀௞௞ + 𝑤௜,௜൯ (1b) 

where ij is the total stress component of the bulk 
material; ij is the strain component;  and  denote 
Lame' constants of the bulk material; ij is the 
Kronecker delta; and p denotes the excess pore fluid 
pressure. In addition,  and M are Biot's parameters 
accounting for compressibility of the two-phased 
material. 

In this study, the motion is assumed to be time-harmonic with 
the factor of𝑒௜ఠ௧, where  is the frequency of excitation. The 
equations of motions for the two-phase material (Biot, 
1962), in the absence of body forces and a fluid source, 
can then be expressed in this case as, 

𝜇𝑢௜,௝௝ + (𝜆 + 𝛼ଶ𝑀 + 𝜇)𝑢௝,௝௜ + 𝛼𝑀𝑤௝,௝௜  

= −𝜔ଶ𝜌𝑢௜ − 𝜔ଶ𝜌௙𝑤௜ (2a) 

𝛼𝑀𝑢௝,௝௜ + 𝑀𝑤௝,௝௜ = −𝜔ଶ൫𝜌௙𝑢௜ + 𝑚𝑤௜൯ + 𝑖𝜔𝑏𝑤௜ (2b) 

where  and f are the mass densities of the bulk 
material and the pore fluid, respectively; and m is a 
density-like parameter that depends on f and the 
geometry of the pores. In addition, b is a parameter 
accounting for the internal friction due to the relative 
motion between the solid matrix and the pore fluid. 

The general solutions to the equations of motions, 
Equation 2, can be determined by applying Helmholtz 
representation together with the double Fourier 
integral transform with respect to the horizontal 
coordinates given in Equation 3 (Sneddon, 1951), 

𝑓ሜ൫𝑘௫, 𝑘௬ , 𝑧൯ = ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑒ି௜௞ೣ௫ି௜௞೤௬𝑑𝑥𝑑𝑦
∞

ି∞
∞

ି∞  (3a)  

where 𝑘௫ and 𝑘௬ are the wave numbers associated 
with the x and y coordinates respectively. The inverse 
relationship is given by, 

𝑓(𝑥, 𝑦, 𝑧) =
ଵ

(ଶగ)మ ∫ ∫ 𝑓ሜ(𝑘௫ , 𝑘௬ , 𝑧)𝑒௜௞ೣ௫ା௜௞೤௬𝑑𝑘௫𝑑𝑘௬
∞

ି∞
∞

ି∞

 (3b) 

The general solutions in the Fourier transform domain 
can be found elsewhere (Lu and Jeng, 2007). 

In the present study, the analysis of the dynamic interaction 
problem shown in Figure 1 requires a set of influence 
functions of a multi-layered half-space subjected to 
tangential traction of unit intensity applied in the x-
direction over a square area at the depth h below the 
free surface of the half-space. An exact stiffness scheme 
proposed by Senjuntichai, Keawsawasvong and Plangmal 
(2018) is employed to obtain the required influence 
functions. Consider a multi-layered poroelastic half-
space consisting of N poroelastic layers (1, 2,.., N) and 
an underlying poroelastic half-space as shown in 
Figure 1. The stiffness matrices for each layer and the 
half-space are obtained explicitly from the 
relationship between the generalized displacements 
and stresses obtained from the analytical general 
solutions. By enforcing the continuity of 
displacements and tractions at each layer interface, 
the global stiffness matrix can then be constituted. 
The numerical solution of the global stiffness equation 
for a multi-layered poroelastic half-space under 
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horizontal traction applied uniformly over a square 
area yields the required influence functions for the 
proposed solution scheme. More details of the exact 
stiffness matrix scheme together with the explicit 
expressions of all relevant matrices are shown in 
(Senjuntichai, Keawsawasvong and Plangmal (2018). 

3 FORMULATION OF INTERACTION PROBLEM 

Consider a rigid foundation of arbitrary shape with a 
width of 2H, subjected to a time-harmonic horizontal 
load in the x-direction of amplitude Fx, embedded at 
a depth h below the surface of multi-layered 
poroelastic soils as shown in Figure 1. The foundation 
is assumed to be massless, fully permeable, and 
undergoing a time-harmonic horizontal 
displacement of amplitude x. Let Tx denotes the 
tangential traction generated at the contact surface 
under the rigid foundation. The discretization 
technique proposed by Wong and Luco (1976) is 
employed to solve for the unknown Tx. By using this 
technique, the rectangular foundation of size 2H × 2L 
as shown in Figure 2(a) is divided into a number of Nx 
× Ny square elements where Nx and Ny denote the 
number of square elements in the x- and y-direction 
respectively. It is assumed that Tx is constant within 
each discretized element. Note that the nodal point of 
each element is located at its center. The following 
relationship can then be established on the 
discretized contact surface under the rigid 
rectangular foundation: 

𝛥௫ = ∑ ∑ [𝐺௫௫(𝑥௞ , 𝑦௟ ; 𝑥௠ , 𝑦௡)𝑇௫(𝑥௠ , 𝑦௡)]ேೣ
௠ୀଵ

ே೤

௡ୀଵ  (4) 

where 𝐺௫௫(𝑥௞ , 𝑦௟ ; 𝑥௠, 𝑦௡) denotes the influence 
function, which is the horizontal displacement at a 
point with coordinate (𝑥௞ , 𝑦௟ , ℎ) due to a uniform 
horizontal load of unit intensity applied at a 
discretized element with the nodal point (𝑥௠ , 𝑦௡, ℎ). 
The influence function

 
can be obtained from the exact 

stiffness matrix scheme Senjuntichai, 
Keawsawasvong and Plangmal (2018a). The solution 
to Equation 4 yields the unknown Tx at each discretized 
element and the horizontal load Fx can then be 
computed from the following equation: 

𝐹௫ = ∫ ∫ [𝑇௫(𝑥, 𝑦)]𝑑𝑥𝑑𝑦
ு

ିு

௅

ି௅
 (5) 

 
(a) 

 
(b) 

 

 

 

 

 

(c) 

Figure 2. Discretization of contact areas under various rigid 
foundations considered in the numerical study: (a) 
rectangular; (b) circular; and (c) cruciform. 

Finally, the horizontal vibration of rigid foundation 
can be characterized by the following non-
dimensional horizontal compliance, 

𝐶ு =
ఓ(భ)ு௱ೣ

ிೣ
 (6) 

where (1) is the shear modulus of the first layer of the 
multi-layered soils. 
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Figure 3. Comparison of non-dimensional horizontal 
compliances of square foundation on elastic half-space. 

4 NUMERICAL RESULTS AND DISCUSSION 

This section presents numerical results for dynamic 
compliances of embedded rigid foundations in multi-
layered poroelastic soils subjected to time-harmonic 
horizontal loading as shown in Figure 1. To obtain the 
required influence functions employed in the 
formulation of the interaction problem outlined in 
the foregoing section, the inversion of the double-
Fourier transform of the horizontal displacement, 
given by Equation (3b), must be performed. The 
globally adaptive numerical quadrature scheme 
(Piessens et al., 2012) is employed to perform the 
numerical evaluation of the semi-infinite integral in 
each direction. This scheme subdivides the interval of 
the integrand and uses a 21-point Gauss–Kronrod 
rule to estimate the integral over each interval. The 
subdivision continues until the specified tolerance of 
10-3 from the approximation is attained. In the 
numerical study, a non-dimensional frequency 𝛿 =

𝜔𝐻ඥ𝜌(ଵ)/𝜇(ଵ)   is employed where 𝜌(ଵ)denotes the 
mass density of the first layer.  

 
Figure 4. Comparison of non-dimensional horizontal 
compliances of circular foundation on poroelastic half-
space. 

In order to verify the convergence and accuracy of the 
present solution scheme, the existing solution of a 
rigid square foundation given by Wong and Luco (1978) 
is employed. Figure 3 shows a comparison of non-
dimensional horizontal compliance of a rigid square 
foundation of size 2H × 2H [see Figure 2(a) with L = H] 
resting on a homogenous elastic half-space with 
Poisson’s ratio of 0.33 between the present solution 
and the solution by Wong and Luco (1978). To show 
the convergence of the present study, the contact 
area under the square foundation is divided into 
different numbers of discretized elements, i.e. Nx × Ny 
= 4 × 4 or 16 elements, 6 × 6 or 36 elements, and 8 × 8 
or 64 elements. It is found that the solutions from the 
present study agree well with Wong and Luco (1978) 
when Nx × Ny  ≥ 64. Non-dimensional horizontal 
compliances of a rigid circular foundation of radius H 
resting on a homogenous poroelastic half-space were 
presented by Jin and Liu (2000). The material 
properties of the half-space are given as follows: / = 
1.5; M/ = 10; f/= 0.53; m/ = 1.1;  = 0.97 and bH/()0.5 
= 0.1.  The number of square elements used to 
discretize the contact area under the circular 
foundation in the present solution is 52, which are 
obtained by removing some elements near the corners 
of the discretized square contact area of 64 elements, 
as shown in Figure 2(b). In Figure 4, it is obvious that 
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a very good agreement between the two solutions is 
obtained throughout the frequency range under 
consideration. 

 

 
Figure 5. Non-dimensional horizontal compliances of rigid 
foundations of various shapes. 

Non-dimensional horizontal compliances of rigid 
foundations of various shapes in multi-layered poroelastic 
soils over the frequency range 0.1 <  < 3 are considered 
next. The multi-layered poroelastic soils considered in the 
numerical study consist of two layers of identical thickness 
H perfectly bonded together overlying a homogeneous half-
space with the material properties being given in Table 1. 
The influence of foundation shape is investigated first. Four 
types of rigid foundations resting on the multi-layered soils 
(h = 0) are considered in Figure 5, namely, rectangular, 
square, circular and cruciform, with the geometry and 
discretization being respectively shown in Figure 2(a) (L = 
2H for rectangular and L = H for square), Figure 2(b) and 
Figure 2(c).  In Figure 5, the maximum amplitudes of non-
dimensional horizontal compliance (both real and 
imaginary parts) are observed in the cruciform foundation, 
followed by the circular, square and rectangular 
foundations respectively over the range of 0.1 <  < 3. It is 
evident that a foundation with higher contact area would 

experience lower horizontal displacement than the one with 
lower area under the same amplitude of horizontal load Fx.  

 

 
Figure 6. Non-dimensional horizontal compliances of rigid 
square foundations for different values of embedded depth. 

The influence of the embedded depth “h” on non-
dimensional horizontal compliances is presented in 
Figure 6 for the case of a rigid square foundation (2H 
× 2H). Five different values of embedded depths, i.e., 
h/H = 0, 1, 2, 10 and 100, are shown in Figure 6. It can 
be found that both real and imaginary parts of CH 
show oscillatory variation with the frequency for a 
small embedded depth when h/H is less than two due 
to the effect of standing waves generated between the 
foundation and the layer interface that virtually 
disappear for very deeply buried foundation (a large 
value of h/H). It can be noticed that the horizontal 
compliances for the cases of h/H = 10 and 100 are 
virtually identical indicating that the analysis of a 
deeply embedded foundation (i.e., h/H > 10) in this 
multi-layered soil medium can be performed by 
considering the case of an embedded foundation in a 
poroelastic full-space and employing the material 
properties of the half-space given in Table 1. 
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Table 1. Material properties of a multi-layered poroelastic half-space considered in the numerical study 

  †  † M †  †† f
 †† m ††  b# 

First layer 2.5 5 25 2 1 3 0.95 1.5 
Second layer 1.25 1.88 18.8 1.6 1 1.8 0.98 0.75 
Half-space 10 10 20 2.4 1 4.8 0.9 4.5 

† × 108 N/m2; †† × 103 kg/m3; # × 106 N s/m4 

Next, the influence of poroelastic material properties 
on non-dimensional horizontal compliances is 
investigated. It is found that the parameter b, which 
takes into account the internal friction between the 
solid matrix and the pore fluid, has a strong influence 
on the dynamic interaction between foundations and 
poroelastic media (Zeng and Rajapakse, 1999; Jin and 
Liu, 2000; Senjuntichai, Keawsawasvong and 
Plangmal, 2018a). To investigate the influence of the 
parameter b, Figure 7 presents non-dimensional 
horizontal compliances of the square foundation 
resting on three multi-layered systems with different values 
of the parameter b of the first layer, i.e. b(1) = 1.5 × 104 N 
s/m4, 1.5 × 106 N s/m4 and 1.5 × 108 N s/m4 respectively. 
It is noted that the first layer becomes less permeable 
with increasing values of b(1) since the parameter b is 
inversely proportional to permeability. It can be seen 
from Figure 7 that the parameter b has a significant 
influence on both real and imaginary parts of 
horizontal compliances, and the system is stiffer and 
less damped when the value of b(1) increases. 

Figure 8 presents non-dimensional horizontal 
compliances of the square foundation resting on 
different supporting soil systems, i.e., a multi-layered 
system, a homogeneous half-space and a 
homogeneous layer of thickness H with rigid base. The 
geometry and material properties of the multi-layered 
system are identical to that considered in Figures 5 and 
6 whereas the material properties of homogeneous 
half-space and layer are identical to the first layer in 
Table 1. It is found from Figure 8 that dimensional 
horizontal compliance of the foundation on a 
homogeneous half-space varies smoothly over  the 
frequency range 0.1 <  < 3 for both real and imaginary 
parts whereas CH of the other two systems show 
oscillatory variations with the frequency due to the 
effect of from the standing waves generated in these 
two media. 

 

Figure 7. Non-dimensional horizontal compliances of rigid 
square foundation for different values of b(1). 
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Figure 8. Non-dimensional horizontal compliances of rigid 
square foundations on different supporting soil systems.  

5 CONCLUSIONS 

The dynamic interaction between an embedded rigid 
foundation of arbitrary shape, subjected to time-
harmonic horizontal loading, and multi-layered 
poroelastic soils are investigated in this paper by 
employing a discretization technique and an exact 
stiffness matrix scheme. The accuracy of the present 
solution is confirmed by comparing with an existing 
solution for compliances of rigid foundations bonded 
to homogeneous elastic and poroelastic half-spaces. 
Numerical results presented in this paper indicate that 
non-dimensional horizontal compliances of rigid 
foundations are significantly influenced by the shape 
of foundation, embedded depth, the parameter b, and 
the frequency of excitation. In addition, numerical 
results also show that the horizontal compliance of a 
rigid foundation on a layered medium is substantially 
different from the one on a homogeneous half-space 
due to the effect of the standing waves generated 
within the finite layer. 
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