Pemupukan Silikon dalam Meningkatkan Pertumbuhan dan Hasil Tanaman Sorgum

https://doi.org/10.22146/veg.84207

Mirawanty Amin(1*), Ronny Mulyawan(2), Putri Tria Santari(3), Sri Wahyuni Manwan(4), Rahadian Adi Prasetyo(5)

(1) Badan Riset dan Inovasi Nasional
(2) Agroekoteknologi, Fakultas Pertanian, Univeristas Lambung Mangkurat
(3) Pusat Riset Tanaman Pangan, Organisasi Riset Pertanian dan Pangan, BRIN
(4) Pusat Riset Hortikultura dan Perkebunan, Organisasi Riset Pertanian dan Pangan, BRIN
(5) Agroekoteknologi, Fakultas Pertanian, Universitas Mulawarman
(*) Corresponding Author

Abstract


Penggunaan Silikon (Si) secara terus-menerus tanpa adanya input pemupukan dapat menyebabkan Si tersedia di dalam tanah semakin menurun. Kandungan Si yang rendah dapat menjadi faktor pembatas suatu tanaman terhadap penurunan hasil. Silikon merupakan beneficial element yang sangat dibutuhkan oleh sorgum terhadap pertumbuhannya. Sorgum merupakan tanaman alternatif yang baik terutama di daerah kering, sehingga sorgum sering mengalami cekaman defisit air. Penggunaan Si dapat menurunkan efek bahaya dari cekaman biotik seperti hama dan penyakit, dan cekaman abiotik seperti salinitas, kekeringan, defisiensi hara, dan logam berat. Pentingnya Si pada tanaman menjadi perhatian bagi para peneliti untuk menghasilkan penelitian tentang pemupukan Si pada tanaman. Nanoteknologi merupakan teknik pemupukan ramah lingkungan yang saat ini dikembangkan karena sifatnya yang efisien, ramah lingkungan, dan berkelanjutan. Akan tetapi, masih banyak yang belum mengetahui tentang peran Si pada tanaman, sumber Si, dan pemupukan Si pada sorgum. Sehingga diperlukan informasi secara menyeluruh terkait peran Si hingga pemupukan pada sorgum.


Keywords


cekaman, hasil; pertumbuhan; pupuk; silikon; sorgum.

Full Text:

PDF


References

Abbas, T., Rizwan, M., Alis S., Zia-ur-Rehman, M., Qayyum, M.F., Abbas, F., Hannan, F., Rinklebe, J., Sik, Ok, Y.S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37-47. https://doi.org/10.1016/j.ecoenv.2017.02.028

Adiansyah. 2017. Respon Pertumbuhan Bobot Kering Panen dan Hasil Tanaman Sorgum akibat Pemberian Bahan Pembenah Tanah dan Penerapan Sistem Irigasi di Lahan Kering Lombok Utara (Tesis). Universitas Mataram, Indonesia. [Indonesian]

Ahmed, M., Fayyaz-ul-Hassan., Asif, M. 2014. Amelioration of drought in sorgum (Sorgum bicolor L.) by silicon. Communications in Soil Science and Plant Analysis, 45(4), 470-486. https://doi.org/10.1080/00103624.2013.863907

Ahmed, M., Asif, M., Hassan, F. U. (2014). Augmenting drought tolerance in sorgum by silicon nutrition. Acta physiologiae plantarum, 36, 473-483.

Ahmed M., Hassen F.U., Qadeer, U., Aslam, M.A. 2011. Silicon application and drought tolerance mechanism of sorgum. African Journal of Agricultural Research 6 (3), 594-607.

Al-Wabel, M.I., Usman, A.R., El-Naggar, A.H., Aly, A.A., Ibrahim, H.M., Elmaghraby, S., Al-Omran, A. 2015. Conocarpus biochar as a soil amendment for reducing heavy metals availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22(4), 503-511. https://doi.org/10.1016/j.sjbs.2014.12.003

Alikhani, T.T., Tabatabaei, S.J., Torkashvand, A.M., Khalighi, A., Talei, D., 2020. Morphological and biochemical responses of gerbera (Gerbera jamesonii L.) to application of silica nanoparticles and calcium chelate under hydroponic state. Journal of Ornamental Plants. 10(4), 223-240.

Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O. 2016. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 775-801. https://doi.org/10.1016/j.rser.2016.08.046

Appiah-Nkansah, N. B., Li, J., Rooney, W., Wang, D. 2019. A review of sweet sorgum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy, 143, 1121-1132. https://doi.org/10.1016/j.renene.2019.05.066

Avila, R.G., Magalhães, P.C., da Silva, E.M., de Souza, K.R, D., Campos, C.N., de Alvarenga, A.A., de Souza, T.C. 2021. Application of silicon to irrigated and water deficit sorgum plants increases yield via the regulation of primary, antioxidant, and osmoregulatory metabolism. Agriculture Water Management, 255, 107004. https://doi.org/10.1016/j.agwat.2021.107004

Avila, R.G. Magalhães, P.C., da Silva, E.M., Gomes Júnior, C.C., de Paula Lana, U.G., de Alvarenga, A.A., de Souza, T.C. 2020. Silicon supplementation improves tolerance to water deficiency in sorgum plants by increasing root system growth and improving photosynthesis. Silicon, 12: 2545–2554.

Ayman, M., Metwally, S., Mancy, M., Abd Alhafez, A. 2020. Influence of nano–silica on wheat plants grown in salt–affected soil. Journal of Productivity and Development, 25(3), 279–296. DOI: 10.21608/JPD.2020.120786

Azat, S., Korobeinyk, A. V., Moustakas, K., Inglezakis, V. J. 2019. Sustainable production of pure silica from rice husk waste in Kazakhstan. Journal of cleaner production, 217, 352-359. https://doi.org/10.1016/j.jclepro.2019.01.142

Bathoova, M., Bokor, B., Soukup, M., Lux, A., Martinka, M. 2018. Silicon‐mediated cell wall modifications of sorgum root exodermis and suppression of invasion by fungus Alternaria alternata. Plant Pathology, 67(9), 1891-1900. https://doi.org/10.1111/ppa.12906

Bathoova, M., Švubová, R., Bokor, B., Neděla, V., Tihlaříková, E., Martinka, M. 2021. Silicon triggers sorgum root enzyme activities and inhibits the root cell colonization by Alternaria alternata. Planta, 253, 1-14.

Bhat, J.A., Rajora, N., Raturi, G., Sharma, S., Dhiman, P., Sanand, S., Shivaraj, S.M., Sonah, H., Deshmukh, R. 2021. Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Advances, 3(14), 4019–4028. https://doi.org/10.1039/D1NA00233C

Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S., Chia, C., Marjo C., Gong, B., Munroe, P., Donne, S. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121-128. https://doi.org/10.1016/j.jhazmat.2014.03.017

Bityutskii, N., Pavlovic, J., Yakkonen, K., Maksimović, V., Nikolic, M. 2014. Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant physiology and Biochemistry, 74, 205-211. https://doi.org/10.1016/j.plaphy.2013.11.015

Bocharnikova, E. A., Matichenkov, V. 2008. Using Si fertilizers for reducing irrigation water application rate. In Proceedings of the 3rd Silicon in agriculture conference SCOTTSVILLE, South Africa. CGIAR(2007).

Carvalho, S. P., Moraes, J. C., Carvalho, J. G. 1999. Efeito do silício na resistência do sorgo (Sorgum bicolor) ao pulgão-verde Schizaphis graminum (Rond.)(Homoptera: Aphididae). Anais da Sociedade Entomológica do Brasil, 28, 505-510. https://doi.org/10.1590/S0301-80591999000300017

Chandraju, S., Venkatesh, R., Kumar, C. C., Res, J. C. P. 2013. Estimation of sugars by acid hydrolysis of sorgum husk by standard methods. Journal of Chemical and Pharmaceutical Research, 5(12), 1272-1275.

Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., Zhang, S. 2016. Silicon moderated the K deficiency by improving the plant-water status in sorgum. Scientific reports, 6(1), 22882.

Chhipa, H. 2017. Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15, 15-22.

Coskun, D., Britto, D. T., Huynh, W. Q., Kronzucker, H. J. 2016. The role of silicon in higher plants under salinity and drought stress. Frontiers in plant science, 7, 1072.

de Oliveira, R. L. L., de Mello Prado, R., Felisberto, G., Checchio, M. V., Gratão, P. L. 2019. Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorgum plants. Journal of Soil Science and Plant Nutrition, 19, 524-534.

de Oliveira, R. L. L., de Mello Prado, R., Felisberto, G., Cruz, F. J. R. 2019. Different sources of silicon by foliar spraying on the growth and gas exchange in sorgum. Journal of Soil Science and Plant Nutrition, 19, 948-953. https://doi.org/10.1007/s42729-019-00092-1

de Moraes, A. C. P., Lacava, P. T. 2022. Use of silicon and nano-silicon in agro-biotechnologies. In Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement (pp. 55-65). Academic Press. https://doi.org/10.1016/B978-0-323-91225-9.00017-0

de Farias Guedes, V. H., de Mello Prado, R., Frazão, J. J., Oliveira, K. S., & Cazetta, J. O. 2020. Foliar-applied silicon in sorgum (Sorgum bicolor L.) alleviate zinc deficiency. Silicon, 1-7

El-Saadony, M. T., Desoky, E. S. M., Saad, A. M., Eid, R. S., Selem, E., Elrys, A. S. 2021. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 106, 1-14. https://doi.org/10.1016/j.jes.2021.01.012

El-Saadony, M.T., Saad, A.M., Soliman, S.M., Salem, H.B., Desoky, E.M., Babalghith, A.O., El-Tahan, A.M., Ibrahim, O.M., Ebrahim, M., El-Mageed, T.A., Elrys, A.R., Elbadawi, A.A., El-Tarabily, K.A., Abu Qamar, S.F. 2022. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Front. Plant. Sci. 13: 946717. https://doi.org/10.3389/fpls.2022.946717

Etesami, H., Jeong, B. R. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and environmental safety, 147, 881-896. https://doi.org/10.1016/j.ecoenv.2017.09.063

Etesami, H. 2018. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants?. Agriculture, ecosystems & environment, 253, 98-112. https://doi.org/10.1016/j.agee.2017.11.007

Ghanem, H. E., Aldesuquy, H. S., Elshafii, H. A. 2019. Silicon alleviates alkalinity stress of sorgum (Sorgum Bicolor L.) plants by improving plant water status, pigments, protein, nucleic acids and carbohydrates contents. Advances in Agricultural Technology and Plant Sciences Journal, 2, 180027.

Ghasemi Lemraski, M., Normohamadi, G., Madani, H., Heidari Sharifabad, H., Mobasser, H. R. 2014. Effect of silicon and potassium foliar application and nitrogen rates on yield and yield components of Iranian rice cultivars, Tarom Hashemi and Tarom Mahalli. New Finding in Agriculture, 9(1 (Autumn 2014)), 47-66.

Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed jingerthe world. Microbiological research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009

Gonzalo, M. J., Lucena, J. J., & Hernández-Apaolaza, L. 2013. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant physiology and biochemistry, 70, 455-461. https://doi.org/10.1016/j.plaphy.2013.06.007

Hadebe, S. T., Modi, A. T., Mabhaudhi, T. 2017. Drought tolerance and water use of cereal crops: A focus on sorgum as a food security crop in sub‐Saharan Africa. Journal of Agronomy and Crop Science, 203(3), 177-191. https://doi.org/10.1111/jac.12191

Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., Lux, A. 2005. Application of silicon enhanced drought tolerance in Sorgum bicolor. Physiologia Plantarum, 123(4), 459-466. https://doi.org/10.1111/j.1399-3054.2005.00481.x

Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M. R., Dashtaki, M. 2013. Response of a new and a commonly grown forage sorgum cultivar to limited irrigation and planting density. Agricultural Water Management, 117, 62-69. https://doi.org/10.1016/j.agwat.2012.11.001

Jeelani, P. G., Mulay, P., Venkat, R., Ramalingam, C. 2020. Multifaceted application of silica nanoparticles. A review. Silicon, 12, 1337-1354. https://doi.org/10.1007/s12633-019-00229-y

Jinger, D., Dhar, S., Vijayakumar, S., Pande, V. C., Kakade, V., Jat, R. A., Dinesh, D. 2020. Silicon nutrition of graminaceous crops. Indian Farming, 70(10), 18-21.

Kalteh, M., Alipour, Z. T., Ashraf, S., Marashi Aliabadi, M., Falah Nosratabadi, A. 2018. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3). 49–55. DOI: 10.22034/jchr.2018.544075

Kalia, A., Sharma, S. P., Kaur, H. (2019). Nanoscale fertilizers: harnessing boons for enhanced nutrient use efficiency and crop productivity. Nanobiotechnology Applications in Plant Protection: Volume 2, 191-208.

Kopittke, P. M., Gianoncelli, A., Kourousias, G., Green, K., McKenna, B. A. 2017. Alleviation of Al toxicity by Si is associated with the formation of Al–Si complexes in root tissues of sorgum. Frontiers in plant science, 8, 2189.

Kovács, S., Kutasy, E., Csajbók, J. 2022. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants, 11(9), 11–22. https://doi.org/10.3390/plants11091223

Kumar, M., Sabbarwal, S., Mishra, P. K., Upadhyay, S. N. 2019. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresource technology, 279, 262-270. https://doi.org/10.1016/j.biortech.2019.01.137

Liang, Y., Si, J., Römheld, V. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New phytologist, 167(3), 797-804. https://doi.org/10.1111/j.1469-8137.2005.01463.x

Liang, Y., Sun, W., Zhu, Y. G., Christie, P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental pollution, 147(2), 422-428. https://doi.org/10.1016/j.envpol.2006.06.008

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., & Song, A. 2015. Silicon in agriculture. LIANG, Y. et al. Silicon-mediated tolerance to salt stress. Springer Science, 123-142.

Lim, J. S., Manan, Z. A., Alwi, S. R. W., & Hashim, H. 2012. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and sustainable energy reviews, 16(5), 3084-3094. https://doi.org/10.1016/j.rser.2012.02.051

Liu, L., Tan, Z., Zhang, L., Huang, Q. 2018. Influence of pyrolysis conditions on nitrogen speciation in a biochar ‘preparation-application’process. Journal of the Energy Institute, 91(6), 916-926. https://doi.org/10.1016/j.joei.2017.09.004

Liu, X., Li, L., Bian, R., Chen, D., Qu, J., Wanjiru Kibue, G., Pan, G., Zhang, X., Zheng, J. Zheng, J. 2014. Effect of biochar amendment on soil‐silicon availability and rice uptake. Journal of Plant Nutrition and Soil Science, 177(1), 91-96. https://doi.org/10.1002/jpln.201200582

Mahmoud, L. M., Shalan, A. M., El-Boray, M. S., Vincent, C. I., El-Kady, M. E., Grosser, J. W., Dutt, M. (2022). Application of silicon nanoparticles enhances oxidative stress tolerance in salt stressed ‘Valencia’sweet orange plants. Scientia Horticulturae, 295, 110856.https://doi.org/10.1016/j.scienta.2021.110856

Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., Subba Rao, A. 2014. A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84, 505-518.

Mitani, N., Ma, J. F. 2005. Uptake system of silicon in different plant species. Journal of experimental botany, 56(414), 1255-1261. https://doi.org/10.1093/jxb/eri121

Nabati, J., Kafi, M., Masoumi, A., Mehrjerdi, M. Z. 2013. Effect of salinity and silicon application on photosynthetic characteristics of sorgum (Sorgum bicolor L.). International Journal of Agricultural Sciences, 3(4), 483-492.

Niyazi, B. A. 2018. Forage production and water use efficiency (WUE) of sorgum (Sorgum bicolor L.) under drought stress as affected by silicon (Si) treatments. Int J Eng Res Tech, 7, 32-38.

Oliveira, K. S., de Mello Prado, R., de Farias Guedes, V. H. 2020. Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorgum plants. Journal of Soil Science and Plant Nutrition, 20, 872-880. https://doi.org/10.1007/s42729-020-00173-6

Parr, J. F., Sullivan, L. A. 2005. Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37(1), 117-124. https://doi.org/10.1016/j.soilbio.2004.06.013

Parveen, A., Mumtaz, S., Saleem, M. H., Hussain, I., Perveen, S., Thind, S. 2022. Silicon and nanosilicon mediated heat stress tolerance in plants. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement (pp. 153-159). Academic Press. https://doi.org/10.1016/B978-0-323-91225-9.00001-7

Pokhrel, S. 2016. Influence of silicon on the development of anthracnose of grain sorgum. LSU’s Mater Theses. 4608.https://digitalcommons.lsu.edu/gradschool_theses/4608

Periakaruppan, R., N, R. D., Abed, S. A., Vanathi, P., Kumar, J. S. 2023. Production of biogenic silica nanoparticles by green chemistry approach and assessment of their physicochemical properties and effects on the germination of sorgum bicolor. Silicon, 1-8. https://doi.org/10.1007/s12633-023-02348-z

Qian, L., Chen, B., Chen, M. 2016. Novel alleviation mechanisms of aluminum phytotoxicity via released biosilicon from rice straw-derived biochars. Scientific reports, 6(1), 29346.

Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., El-Sheery, N.I., Brestic, M. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 1-11.

Raimondi, G., Maucieri, C., Toffanin, A., Renella, G., Borin, M. 2021. Smart fertilizers: What should we mean and where should we go?.Italian Journal of Agronomy, 16(2).

Rajendiran, S., Coumar, M. V., Kundu, S., Dotaniya, A. M., Rao, A. S. 2012. Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Current Science, 911-920. https://www.jstor.org/stable/24088879

Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady H., Verma, K.K., Singh, A., Hullebusch, E.D., Singh, R.K., Jatav, H.S., Choudhary, R. 2021. Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology, 10(8), 791. https://doi.org/10.3390/biology10080791

Resende, R.S., Rodrigues, F.A., Cavatte, P.C., Martins, S.C.V., Moreira, W.R., Chaves, A.R.M., DaMatta, F.M. 2012. Phytopathology 102 (9): 892-898. http://dx.doi.org/10.1094/ PHYTO-01-12-0014-R

Resende, R. S., Rodrigues, F. A., Gomes, R. J., Nascimento, K. J. T. 2013. Microscopic and biochemical aspects of sorgum resistance to anthracnose mediated by silicon. Annals of applied biology, 163(1), 114-123. https://doi.org/10.1111/aab.12040

Reynolds, O. L., Padula, M. P., Zeng, R., Gurr, G. M. 2016. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Frontiers in plant science, 7, 744. https://doi.org/10.3389/fpls.2016.00744

Rizal, G., Karki, S., Alcasid, M., Montecillo, F., Acebron, K., Larazo, N., Garcia, R., Slamet-Loedin, I.H., Quick, W. P. 2014. Shortening the breeding cycle of sorgum, a model crop for research. Crop Science, 54(2), 520-529. https://doi.org/10.2135/cropsci2013.07.0471

Sakr, N. 2016. Silicon control of bacterial and viral diseases in plants. Journal of plant protection research, 56, 331 – 336.

Sakr, N. 2017. The role of silicon (Si) in increasing plant resistance against insect pests review article. Acta Phytopathologica et Entomologica Hungarica, 52(2), 185-204. DOI: https://doi.org/10.1556/038.52.2017.020

Sarkar, S., Datta, S. C.,Biswas, D. R. 2014. Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water‐holding capacities and nutrient‐release behavior. Journal of Applied Polymer Science, 131(6). https://doi.org/10.1002/app.39951

Scrinis, G., Lyons, K. 2007. The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. The International Journal of Sociology of Agriculture and Food, 15(2), 22-44. https://doi.org/10.48416/ijsaf.v15i2.293

Shedeed, S. I. 2018. Assessing effect of potassium silicate consecutive application on forage maize plants (Zea mays L.). Journal of Innovations in Pharmaceutical and Biological Sciences, 5(2), 119-127.

Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K., Inanaga, S. (2010). Effect of silicon application on sorgum root responses to water stress. Journal of Plant Nutrition, 34(1), 71-82. https://doi.org/10.1080/01904167.2011.531360

Sukartono., Suwardji., Ridwan. 2015. Pemanfaatan Kompos dan Biochar sebagai Bahan Pembenah Tanah Lahan Bekas Penambangan Batu Apung di Pulau Lombok. Agronomi Teknologi Dan Sosial Ekonomi Pertanian, 25(2), 1-11.

Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V., Kannan, N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14, 1-14.

Teixeira, G. C. M., de Mello Prado, R., Oliveira, K. S., D’Amico-Damião, V., da Silveira Sousa Junior, G. 2020. Silicon increases leaf chlorophyll content and iron nutritional efficiency and reduces iron deficiency in sorgum plants. Journal of Soil Science and Plant Nutrition, 20, 1311-1320. https://doi.org/10.1007/s42729-020-00214-0

Tripathi, D. K., Mishra, S., Chauhan, D. K., Tiwari, S. P., Kumar, C. 2013. Typological and frequency based study of opaline silica (phytolith) deposition in two common Indian Sorgum L. species. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 83, 97-104.

Wang, Y., Xiao, X.,Chen, B. 2018. Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms. Scientific Reports, 8(1), 8040.

Yin, L., Wang, S., Li, J., Tanaka, K., Oka, M. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorgum bicolor. Acta physiologiae plantarum, 35, 3099-3107.

Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X., Zhang, S. 2016. Silicon‐mediated changes in polyamines participate in silicon‐induced salt tolerance in S orghum bicolor L. Plant, cell & environment, 39(2), 245-258.

Zarooshan, M., Abdolzadeh, A., Sadeghipour, H. R., Mehrabanjoubani, P. 2022. Effect of silicon and nano silicon application on wheat (C3) and sorgum (C4) under salinity stress. Journal of Plant Production Research, 29(1), 173-190. DOI: 10.22069/JOPP.2022.18995.2802

Wang, Y., Xiao, X.,Chen, B. 2018. Biochar impacts on soil silicon dissolution kinetics and their interaction mechanisms. Scientific Reports, 8(1), 8040.



DOI: https://doi.org/10.22146/veg.84207

Article Metrics

Abstract views : 1118 | views : 1658

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Vegetalika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

VEGETALIKA journal indexed by: 

 

       

  

View My Stats