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ABSTRACT. A number of approaches have been used inlandslide susceptibility mapping
and there seems to be no agreement on which approach provides best prediction of land-
slide susceptibility. This study was conducted to develop landslide susceptibility maps
of the Tinalah watershed at a 1:25000 scale using analytical hierarchy process (AHP), sta-
tistical index (SI), index of entropy (IOE) and logistic regression (LR) approaches and to
compare performance of those approaches in predicting landslide susceptibility. Out of
114 landslides identified during site investigation, 86 landslides were selected for land-
slide susceptibility analyses, while the remaining 28 landslides were used to verify the
results. Factors controlling landslides considered in the landslide susceptibility mapping
were slope inclination, lithology, distance to fault, land use, distance to river, and rainfall.
Analyses of Receiver Operating Characteristics (ROC) curves showed that the AUC values
of the landslide susceptibility maps derived using AHP, SI, IOE and LR approaches were
0.784, 0.688, 0.827 and 0.834, respectively. The LR approach was concluded to perform the
best in predicting landslide susceptibility in the study area.

Keywords: Analytical hierarchy process · Index of entropy · Landslide susceptibility ·
Logistic regression · Statistical index.

1 INTRODUCTION

Landslide susceptibility maps provide informa-
tion on landslide prone areas and are essentially
determinedbased on identification of areas that
have undergone past landslidesand areas hav-
ing similar or identical physical characteristics.
Glad and Crozier (2005) provides a review of
approaches that have been used to produce
landslide susceptibility maps. The approaches
canbe classified into qualitative and quantita-
tive approaches. Qualitative approaches are es-
sentially based on expert knowledge and ex-
perience. The approaches are subjective and,
therefore, difficult to be applied to different ar-
eas. Prabin (2010) mentioned that AHP devel-
oped by Saaty (1980) is a very popular qualita-
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tive or semi-qualitative method which converts
subjective assessments of relative importance
to a set of overall scores or weights. Mean-
while, quantitative approaches involve map-
ping of statistically large number of parameters
consider to influence the landslide to derive a
predictive relationship between the terrain con-
ditions and the occurrence of landslides. The
approaches are based on statistical approaches
(Lee and Jones, 2004). Statistical approaches
have been adopted for landslide susceptibility
zonation to minimize uncertainties in weight
assignment procedures associated with quali-
tative approaches due to subjectivity. Statisti-
cal analyses are popular because they provide
a more quantitative analysis of slope instabil-
ity, have ability to examine the various effects
of each factor on an individual basis and decide
on the result of mapping in an interactive man-
ner (Aleotti and Chowdhury, 1999). The SI (e.g.,
Pourghasemi et al., 2013), IOE (e.g., Devkota et
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al., 2013; Pourghasemi et al., 2013; Wang et al.,
2016), and LR (Devkota et al., 2013) are a fewex-
amples of quantitative approaches employedin
landslide susceptibility mapping.

The AHPis a multiple criteria decision-
making technique that allows subjective as
well as objective factors to be considered in the
decision-making process (Yalcin, 2008). In a
comparative study, Yalcin (2008) found that the
AHP approach gave a more realistic picture of
the actual distribution of landslide susceptibil-
ity, than the SI approach. Mancini et al. (2010),
Pradhan (2010), Youssef et al. (2015), and Kav-
zoglu (2015) found that the LR approachshowsa
landslide susceptibility prediction better than
the SI approach. Shahabi et al. (2013), Devkota
et al. (2013), and Pourghasemi et al. (2013)
indicated that the LR approach had a high
prediction performance of landslide suscepti-
bility zone, as compared to the AHP, IOE, and
SI approaches. Akbari et al. (2014) was also
mentioned that the LR approachwas reliable
to predict the landslide susceptibility. Further-
more, Wang et al. (2016) mentioned that the
SI and IOE approachesgave similar resultsin
landslide susceptibility analyses. Those pre-
vious studies indicate that there seems to be
no agreement on which approach provides the
best prediction of landslide susceptibility.

Hilly morphology and poor engineering ge-
ological conditions most likely contributed to
the susceptibility of the Tinalah Watershed to
landslides. This paper presents results of land-
slide susceptibility mapping in the watershed
using the AHP, SI, IOE and LR approaches.
The methodology for the landslide suscepti-
bility analysis using those approached is de-
scribed. Comparison of the landslide suscep-
tibility analysis results obtained from these ap-
proaches and the accuracy of those approaches
in predicting landslide susceptibility is high-
lighted.

2 THEORY

In the landslide susceptibility analysis using the
AHP approach, each class of the parameters is
assigned a score, where the highest score indi-
cates the most susceptible parameter to cause
a landslide. After scoring each class of the pa-
rameters, the weight of each parameter is as-
signed using a pairwise comparison technique

based on the relative importance of the param-
eter. Consistence of the weights assigned to the
parameters is verified using the consistency ra-
tio (CR), which is based on consistency index
(CI), as described in the following Equations (1)
and (2) (Saaty, 1980):

CI =
λ−n

max
n − 1

(1)

CR =
CI
RI

(2)

where λmax = the maximum of eigenvalue;
n = the number of rows and columns; and
RI = random consistency index. The assigned
weights for the parameters are considered to be
acceptable once the calculated CR was less than
1. Saaty (1980) suggested that a consistency ra-
tio (CR) close to 0 indicates that the probability
of the assigned weights to the parameters gen-
erated randomly is high. Landslide susceptibil-
ity index (LSI) of the AHP approach canthen be
calculated using Equation (3) (Voogd, 1983), as
follows:

LSI =
n

∑
i=1

Ri × Wi (3)

where Ri = the rating class of parameter i;
Wi = the weight of parameter i; n = number of
parameter. The LSI represents the relative oc-
currence of landslide. The LSI value obtained
from the AHP approach, as well as the other ap-
proaches, can be divided into several levels of
landslide susceptibilities using a classification
system of natural breaks.

In the landslide susceptibility analysis using
the SI approach, calculation of landslide density
for each class ofthe parametersis performed to
compute the weight of each class of the param-
eters. To calculate the density of each class, each
of the parametric maps and the landslide inven-
tory map is overlaid using combination of spa-
tial analysis tools in GIS to produce new layers,
where each layer containsthe pixel number of
landslides in each class. One pixel may repre-
sent an area of landslide. The pixel numbers of
landslides are then changed into percentage of
each class. The weight of each class (Wij) is de-
fined as the natural logarithm density in the cat-
egorical unit divides by the landslide density in
the entire map and is calculated using Equation
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(4), as follows (Van Westen, 1997; Pourghasemi
et al., 2013):

Wij = ln
[

Eij

E

]
= ln

[
Lij/LT

Pij/PT

]
(4)

where Wij = the weight given to a certain
class i of landslide causative factor j; Eij =
the landslide density within class i of landslide
causative factors j; E = the total landslide den-
sity within the entire map; Lij = the number of
landslide in certain class i of landslide causative
factor j; Pij = the number of pixel in a certain
class i of landslide causative factor j; LT = the
total number of landslide in the entire map; PT
= the total pixels of the entire map. The cal-
culation of class weight is only performed for
the class with landslide occurrence. For any
class without landslide occurrence, the weight
is assigned to be zero. The landslide suscep-
tibility index (LSI) can thenbe computed us-
ing Equation (5) as follows (Van Westen, 1997;
Pourghasemi et al., 2013):

LSI =
n

∑
ij

Wij (5)

where Wij = the weight of class i in parameter
j; n = the total number of landslide causative
factors.

In the landslide susceptibility analysis using
the IOE approach, the following Equations (6)
to (11) can be used to calculate the weight of
each parameter (Wj) (Devkota et al., 2013; Wang
et al., 2015):

Pij =
b
a

(6)

(
Pij

)
=

Pij

∑
Sj
j=1 Pij

(7)

Hj = −
Sj

∑
j=1

(
Pij

)
log2

(
Pij

)
(8)

Hjmax = log2 Sj (9)

Ij =
Hjmax − Hj

Hjmax
(10)

Wj = Ij × Pj (11)

where Pij = the density of class i in parame-
ter i; a = the domain percentage, which is rep-
resented by the number pixel of class divided
by the total pixels of the entire map; b = land-
slide percentage, which is represented by the
number of landslide in class divided by the to-
tal landslides;

(
Pij

)
= the probability of land-

slide densityof class i in parameter j; Sj = num-
ber of classes; Hj and Hjmax = entropy values;
I j = the information coefficient of parameter j,
where the value of I ranges from 0 to 1. The
landslide susceptibility index, which expresses
the sum of all parameter classes and is ranked
according to the calculated landslide density for
each class, can be determined using Equation
(12):

LSI =
n

∑
i=1

z
mi

× C × Wj (12)

where i = the number of parametric map (1,
2, ... n); z = the number of classess within para-
metric map with the greatest number of classes;
mi = the number of classes within parametric
map; C = the value of the class after secondary
classification.

The LR approach allows analysis of a mul-
tivariate regression relation between a depen-
dent variable (the presence or absence of land-
slides) and a number of independent variables
(i.e., slope inclination, distance to river, lithol-
ogy, distance to fault, and land use). The ap-
proach generates the model statistics and coef-
ficients of a formula which is useful to predict
a logit transformation of the probability that
the dependent variable is 1 (probability of oc-
currence of a landslide event) (Ayalew and Ya-
magishi, 2005). In the landslide susceptibility
analysis using the LR approach, the probabil-
ity of landslide occurrence can be calculated us-
ing Equations (13) and (14) (Ayalew and Yam-
agishi, 2005; Lee and Pradhan, 2007; Pradhan,
2010; Devkota et al., 2013):

P =
1

(1 + e−z)
(13)

z = β0 + β1x1 + β2x2 + · · ·+ βnxn (14)

where P = the probability of landslide occur-
rence, which varies from 0 to 1; z = a linear
combination of independent variables; β0 = the
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intercept or statistically constant coefficient, β1,
β2,· · · , βn = the coefficients of logistic regres-
sion model, x1, x2, . . ., xn = the independent
variables, n = the number of independent vari-
ables. Estimation ofthe logistic regression coef-
ficient of each parameter can be performed us-
ing the backward elimination (backward likeli-
hood ratio) approach. The standard errors of
the estimations are set to be between 0.001 and
0.005 and R2 being greater than 0.2 can be an ac-
cepted model as influential predictor variables
(Van den Eekhaut et al., 2006).

3 STUDY AREA

The Tinalah Watershed is located in Yogyakarta
Special Province (Indonesia) and covers an area
of 64 km2 consisting of five sub-districtsin Ku-
lonProgo Regency, namely Borobudur, Sami-
galuh, Kalibawang, Girimulyo, Nanggulan,
and Minggir (Figure 1). The slopesin the wa-
tershed varied from 0 to 69° and the altitude
ranged from 62.6 to 987.5 m above sea level.
As larger parts of the watershedwere hills
and smaller parts were plains, the drainage
or stream systems weretypicallyshort and
had steep longitudinal morphometries which
abruptly changed into gentler slopes. The
Tinalah River was one of the major tributaries
of The Progo River, which was the main river
flowing from Central Java Province to southern
part of Yogyakarta Special Province. A number
of landslides occurred in the watershedmost
likely due to the hilly morphology and poor
engineering geological conditions (Figure 2).

4 METHODOLOGY

4.1 Landslide susceptibility parameters
Factors controlling landslides considered as in-
put parameters in the landslide susceptibil-
ity analyses wereslope inclination, river, lithol-
ogy, fault, land use, and rainfall. Field map-
pingwas conducted to verify spatial distribu-
tions of slope inclinations and rivers derived
from a digital elevation model (DEM), litholo-
gies and faults derived from regional geologi-
cal map of Yogyakarta Sheet prepared by Ra-
hardjo et al. (1995), and land uses derived from-
Topographical Map of Indonesia, upon which
parametricmaps of slope inclination, distance
to river, lithology, distance to fault, and land use
were developed, respectively. Rainfall inten-

sity map was developed from annual rainfall
data recorded from 2006 to 2015 in five rainfall
stations located in the watershed and the sur-
rounding area. In addition, landslide locations
were recorded for development of a landslide
inventory map.In total, 114 landslides were
identified during the field investigation. Out
of those total landslides, 86 landslides (75.4 %)
were randomly selected for the landslide sus-
ceptibility analyses using the AHP, SI, IOE and
LR approachesand called landslide training,
while the remaining 28 landslides (24.6 %)were
used to verify results of the landslide suscepti-
bility analysesand called landslide verification.
The landslides were digitized and rasterized in
GIS with a grid size of 20×20 m.Other vector
data layers (i.e., slope inclination, distance to
river, lithology, distance to fault, and land use
maps) were also rasterized with this size.

4.2 Landslide susceptibility zonation
The landslide susceptibility analyses required
division of each parameter into a number of-
sub parameters or classes. The slope was di-
vided into seven classes, i.e., flat (0–2◦), gently
slope (2–4◦), sloping (4–8◦), moderately steep
(8–16◦), steep (16–35◦), very steep (35–55◦) and
extremely steep (>55◦), following a terrain clas-
sification proposed by Van Zuidam (1983). The
lithology was divided into five classes as ob-
served in the field mapping, namely sand-clay
deposit, ash, breccia and tuff, sandstone and
limestone, and andesitic breccia. The distance
to riverwere divided into three classes, namely
0–50 m, 50–100 m, and more than 100 m, which
were essentially modification of the classifica-
tion proposed by Varnes (1984). The distance
to fault was divided into three classes, namely
less than 500 m, 500–1000 m, and more than
1000 m following the classification proposed by
Varnes (1984). The rainfall intensity was clas-
sified into three classes, namely less than 1800
mm/yr, 1800–2000 mm/year, and more than
2000 mm/year.

In the landslide susceptibility analysis using
the AHP approach, each class of the parameters
was assigned a scoreranging from 1 to 5, where
the highest score indicated the most suscepti-
ble parameter to cause a landslide. The CI and
CR values were calculated using Equations (1)
and (2), respectively, while the LSI wascalcu-
lated based on Equation (3). The higher the LSI
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Figure 1: Study area.

Figure 2: Typical landslides in the study area.
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was, the more susceptible the area to landslide
would be. The LSI calculation showed that the
LSI had a minimum value of 1 and a maxi-
mum value of 5, with a mean value of 3.40 and
a standard deviation of 0.75. In the landslide
susceptibility analysis using the AHP approach,
the study area was divided into three different
zones of the landside susceptibility: low sus-
ceptibility (i.e., LSI <2.67), moderate suscepti-
bility (i.e., 2.67 ≤ LSI ≤ 3.60) and high suscep-
tibility (i.e., LSI >3.60).

In the landslide susceptibility analysis us-
ing the SI approach, the weight of each class
(Wij) was calculated using Equation (4), while
the LSI was calculated based on Equation (5).
The LSI calculation showed that the LSI values
were in the range of -6.18 to 1.95, with the mean
value of -0.84 and standard deviation of 1.24.
The study area was then divided into three dif-
ferent zones of the landside susceptibility: low
susceptibility (i.e., LSI <-2.37), moderate sus-
ceptibility (i.e., -2.37 ≤ LSI ≤ -0.57) and high
susceptibility (i.e., LSI >-0.57).

In the landslide susceptibility analysis using
the IOE approach, the weight of each parame-
ter (Wj) was computed using Equations (6) to
(11). The LSI was determined using Equation
(12). The calculation results showed that the
LSI values were in the range of 0.36 to 1.32,
with the mean value of -0.96 and standard devi-
ation of 0.17. The study area was then divided
into three different zones of the landside sus-
ceptibility: low susceptibility (i.e., LSI <0.68),
moderate susceptibility (i.e., 0.68 ≤ LSI ≤ -
0.96) and high susceptibility (i.e., LSI >0.96). In
the landslide susceptibility analysis using the
LR approach, the probability of landslide oc-
currence was calculated using Equations (13)
and (14). All parameters and landslide data
were converted into ascii (.txt) file format,
upon whichall data were exported into SPSS
software for estimation ofthe logistic regression
coefficient of each parameter using the back-
ward elimination (backward likelihood ratio)
approach.

4.3 Verification of landslide susceptibility
maps

In order to determine the accuracies of the AHP,
SI, IOE and LR approaches in predicting the
landslide susceptibility zones in the study area,
the landslide susceptibility maps developed us-

ing the AHP, SI, IOE and LR approaches were
overlaid with the landslide verification data
(i.e., 28 landslides), upon which analyses of Re-
ceiver Operating Characteristics (ROC) curves
were performed using SPSS software. Previ-
ous researchers (e.g.,Lee and Pradhan, 2007;
Pourghasemi et al., 2013; Devkota et al., 2013)
had used the area under the curve (AUC) of the
ROC curve to compare performance of differ-
ent approaches in landslide susceptibility anal-
yses. Following the classification proposed by
Yesilnacar and Topal (2005), the landslide sus-
ceptibility approaches with the AUC values of
0.9–1, 0.8–0.9, 0.7–0.8, 0.6–0.7, and 0.5–0.6 were
considered to have excellent, very good, good,
average, and poor prediction accuracy, respec-
tively. Higher accuracy of the landslide sus-
ceptibility approaches in predicting occurrence
of landslide was, therefore, inferred from the
higher AUC value.

5 RESULTS AND DISCUSSION

5.1 Landslide susceptibility parameters
Slope morphology influences the stability of
materials constituting the slope. Under grav-
ity loading, the steeper the slope is, the lower
the stability of theslope will be. Based on the el-
evation and slope inclination, the watershedin
the study area could be divided into three slope
morphologies, namelyupslope, midslope, and
lower slope. The upper slope of the watershed
had a slope inclination greater than 27◦ and
covered the areas from the north to the south-
west of the watershed. The midslope of the wa-
tershed had aslope inclination ranging from 12
to 27◦ and covered the areas in the middle of
the watershed. Meanwhile, the lower slope of
the watershed had aslope inclination less than
12o and covered the areas in the southeast of
the watershed. Map of slope inclination in the
study area used in the landslide susceptibility
analysesis shown in Figure 3(a).

Erosion of river bank toe due to undercutting
action of flowing water may induce landslide.
In addition, stream water may increase satura-
tion degree of slope materials, leadingto a re-
duction of shear strength of the materials and,
subsequently, landslides. As anumber of land-
slides along the rivers in the study area were ob-
served during the field investigation, distanceto
the river was, therefore,also considered as one
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Figure 3: Maps of landslide susceptibility parameters: (a) slopeinclination;(b) distance from river
map; (c) lithology; (d) distance from fault; (e) land use map; and(f) rainfall intensity.
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of landslide controlling parameters in the de-
velopment of landslide susceptibility maps. Ar-
eas closer to the rivers were likely to be more
susceptible to landslides. Mapof distance from
river in the study area used in the landslide sus-
ceptibility analysesis shown in Figure 3(b).

Rock type and the weathering degree influ-
ence the susceptibility of slopes to landslides.
Igneous and non-foliated metamorphic rocks
tend to have higher strength as compared to
volcanic, sedimentary, and foliated metamor-
phic rocks. Weathering reduces cohesive rock
strength so that for the same rock type, the
higher the weathering degree is, the more sus-
ceptible to landslide will be. Based on the
field mapping, the rock types found in the area
were andesite breccia, limestone, sandstone,
ash, breccia and tuff deposits and sand-clay de-
posits (Figure 3(c)). In reference to the Regional
Geological Map of Yogyakarta Sheet (Rahardjo
et al., 1995), the andesitic breccia was a member
of the Kebobutak Formation, the limestone was
a member of the Jonggrangan Formation, the
sandstone was a member of the Jonggrangan
Formation, the ash, breccia and tuff were mem-
bers of the Young Volcanic Deposit, while the
sand-clay deposit was a member of the Collu-
vium Deposit. Under a tropical climate, most
rocks in the study area were highly weathered.
The andesitic breccia, ash, breccia, and tuff de-
posits, and sand-clay deposits tended to have
lower strength than the sandstone and lime-
stone. Most landslides were found in slop-
ing areas consisting of thehighly weatheredan-
desite breccia.

Fault displacements tend to form weak zone-
sof fractured rock masses having a relatively
low cohesive strength. In addition, the frac-
tured rock massesalso tend to have a relatively
high permeability for water infiltration, which
promotes more intensive weathering process
and, subsequently rock strength reduction.
Therefore, the closer the area from the fault
zone is, the higher the probability of landslides
to occur will be. The zones of distance from
fault in the study area used in the landslide sus-
ceptibility analyses are shown in Figure 3(d). In
agreement to the structural data presented in
Rahardjo et al. (1995), a normal fault trending
northwest-southeast and cutting through the
limestone of the Jonggrangan Formation and

the andesite breccia of the Kebobutak Forma-
tionwas identified in the southern part of the
watershed.In addition to the identified nor-
mal fault line, zones of distance from fault
shown in the map also includedzones of dis-
tance from lineaments inferred from changes of
topographic characteristics.

In the plantation areas, vegetation may re-
duce water infiltration into the slopes by in-
tercepting rain water. Although housing and
the infrastructure in the settlement areas may
reduce rainwater infiltration, increase of loads
induced by the housing and infrastructures
may cause landslides. Irrigation of rice fields
during planting seasons leads to soil satura-
tion and water infiltration that may induce
landslides. Land uses existing in the study
area were plantation-forest, settlement, and rice
field, as shown in Figure 3(e). Although land-
slides more likely occur in the rice field ar-
eas than in the plantation areas, landslideswere
found mostly in the plantation and settlement
areas because both land uses were located in
sloping areas while rice fields were mostly de-
veloped in low lands.

Increase of pore water pressure due to rain
water infiltration reduces soil and rock strength
that may lead to landslides. Areas with more
rainfall will likely be more susceptible to land-
slide. Map of rainfall intensity in the study area
is shown in Figure 3(f). The northern part of
the study area had the highest rainfall intensity,
while the southern part had the lowest. The
peak amount of rainfall typically occurred in
January, February, March, November and De-
cember, while the lowest amount of rainfall oc-
curred in August.

5.2 Landslide susceptibility zone
Result of the pairwise comparison based on
the relative importance of the parameter in the
landslide susceptibility analysis using the AHP
approach is shown in Table 1. The score of each
class and the weight of each parameter assigned
in the landslide susceptibility analysis using the
AHP approach are shown in Table 2. The calcu-
lated CR was 0.04 or close to 0. The landslide
susceptibility map developed using the AHP
approach is shown in Figure 4 and landslide
density in each of the landslide susceptibility
zones is shown in Table 3. It is shownthat the
study area dominantly consisted of high land-
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slide susceptibility zone. Although landslides
mostly occurred in high landslide susceptibil-
ity zone, the highest density of landslides was
located in the moderate landslide susceptibility
zone.

Calculation results of landslide density and
weight for each class of the parameters in the
landslide susceptibility analysis using the SI
approach are shown in Table 4. A positive
weight value of a class indicates a relation-
ship exists between the class and landslide oc-
currence. The stronger the relationship is, the
higher the class weight value will be. On the
contrary, a negative weight value of a classindi-
cates that the class is not related to the land-
slide occurrence. The positive, highest value
of weight (Wij) for the classes of slope incli-
nation of 16–35◦, lithology of andesitic breccia,
distance from fault of 0–500 m, land use of set-
tlement, distance from river of more than 100 m,
and annual rainfall of 1800–2000 mm/yr in each
of the parameters indicates that those classes
of parameters had the most dominant influence
on the occurrence of landslides in the study
area. The landslide susceptibility map devel-
oped using the SI approach is shown in Figure
5 and landslide density in each of the landslide
susceptibility zones is shown in Table 3. It is
shown that the study area consists dominantly
of high landslide susceptibility zone having the
highest percentage and density of landslides.

The calculated weight of each parameter
in the landslide susceptibility analysis using
the IOE approach is shown in Table 5. The
highest value of density probability (Pij) for
classes of slope inclination of 16–35◦, lithol-
ogy of andesitic breccia, distance from fault of
0–500m, land use of settlement, distance from
riverof more than 100m, and annual rainfall
of 1800–2000 mm/yrin each of the parameters
indicates that those classes of parameters had
the most dominant influence on the occurrence
of landslides in the study area. The landslide
susceptibility map developed using the IOE
approach is shown in Figure 6 and landslide
density in each of the landslide susceptibility
zones is shown in Table 3. It is shown that the
study area consists dominantly of high land-
slide susceptibility zone having the highest
percentage and density of landslides.

The logistic regression coefficient of each pa-

rameter in the landslide susceptibility analysis
using the LR approach is shown in Table 6. Co-
efficients of logistic regression indicate contri-
bution of the parameters (i.e., factors control-
ling landslide) to the landslide occurrence. It
is shown that slope inclination, lithology, land
use, and distance from river hadan important
rolein occurrence of landslidesin the study area.
The landslide susceptibility map developed us-
ing the LR approach is shown in Figure 7 and
landslide density in each of the landslide sus-
ceptibility zones is shown in Table 3. It is shown
that the study area consists dominantly of high
landslide susceptibility zone having the highest
percentage and density of landslides.

5.3 Verification of landslide susceptibility
maps

The ROC curves of landslide susceptibility
maps derived using the AHP, SI, IOE and LR
approaches are shown in Figure 8. The AUC
values of the landslide susceptibility maps de-
rived using AHP, SI, IOE and LR approaches
were 0.784, 0.688, 0.827 and 0.834, respectively.
The AHP approach had a good prediction ac-
curacy (78.4 %), the SI approach had an average
prediction accuracy (68.8 %), while the IOE
and LR had very good prediction accuracies
(82.7 % and 83.4 %). The higher prediction
accuracy of the AHP approach than the SI ap-
proach obtained in this study was similar to
that obtained by Yalcin (2008). Results obtained
in this study were also similar to those ob-
tained by Pourghasemi et al. (2013), where the
LR approach performed the best in predicting
landslide susceptibility, followed by the AHP
approach, and lastly the SI approach.

6 CONCLUSION

In this study, landslide susceptibility maps
were developed using analytical hierarchy
process (AHP), statistical index (SI), index of
entropy (IOE) and logistic regression (LR) ap-
proaches.Five factors controlling landslides,
namely slope inclination, river, lithology, fault,
land use, and rainfall, were considered as in-
put parameters in the landslide susceptibility
analyses. Analyses of Receiver Operating Char-
acteristics (ROC) curves showed that the AUC
values of the landslide susceptibility maps de-
rived using AHP, SI, IOE and LR approaches
were 0.784, 0.688, 0.827 and 0.834, respectively.
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Table 1: Pairwise comparison matrix in landslide susceptibility analysis using the AHP approach.

Parameter Slope
inclination

Lithology Distance to
fault

Land use Distance to
river

Rainfall

Slope inclination 1 2 5 1 3 3
Lithology 1/2 1 3 1/2 3 2
Distance to fault 1/5 1/3 1 1/2 1/3 1
Land use 1 2 2 1 2 3
Distance to river 1/3 1/3 3 1/2 1 2
Rainfall 1/3 1/2 1 1/3 1/5 1

Figure 4: Landslide susceptibility mapdeveloped usingthe AHP approach.
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Figure 5: Landslide susceptibility mapdeveloped usingthe SI approach.

Figure 6: Landslide susceptibility mapdeveloped usingthe IOE approach.
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Figure 7: Landslide susceptibility mapdeveloped usingthe LR approach.

Figure 8: ROC curves of the landslide suscepti-
bility analysis results.

The AHP approach was found to have a good
prediction accuracy (78.4 %), the SI approach-
was found to havean average prediction accu-
racy (68.8 %), while the IOE and LR were found
to have very good prediction accuracies (82.7 %
and 83.4 %). The LR approach performed the
best in predicting landslide susceptibility the
study area.
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Table 3: Weight of each class in landslide susceptibility analysis using the SI approach.

Parameter Class Pixel number of
class (Pij)

Number of
landslide (Lij)

Weight (Wij)

Slope inclination (°)

0–2 261562 0 0
2–4 86142 0 0
4–8 194674 1 -1.88
8–16 534485 21 0.16
16–35 1218490 58 0.35
35–55 262662 6 -0.38
>55 5249 0 0

Lithology

Sand-clay deposit 162615 2 -1
Ash, breccia and tuff 93129 0 0
Sandstone 67860 0 0
Limestone 212134 3 -0.86
Andesitic breccia 2027526 81 0.17

Distance to fault (m)
0–500 1183810 49 0.21
500–1000 767510 18 -0.36
>1000 611944 19 -0.08

Land use
Rice field 428234 3 -1.57
Plantation 1770826 60 0.01
Settlement 364204 23 0.63

Distance to river (m)
0–50 859137 23 -0.23
50–100 662865 21 -0.06
>100 1041262 42 0.18

Rainfall (mm/yr)
<1800 326728 3 -1.3
1800–2000 1018412 44 0.25
>2000 1218124 39 -0.05
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Table 4: Weight of each parameter in landslide susceptibility analysis using the IOE approach.

Parameter Class a b Pij (Pij) Hj Hjmax Ij Pj Wj

Slope inclination (°)

0-2 10.2 0 0 0

1.72 2.81 0.39 0.49 0.19

2-4 3.36 0 0 0
4-8 7.59 1.16 0.15 0.04
8-16 20.85 24.42 1.17 0.34
16-35 47.54 67.44 1.42 0.41
35-55 10.25 6.98 0.68 0.2
>55 0.2 0 0 0

Lithology

Sand-clay 6.34 84.88 0.37 0.19

1.37 2.32 0.41 0.4 0.16
Ash breccia 3.63 2.33 0 0
Sandstone 2.65 6.98 0 0
Limestone 8.28 3.49 0.42 0.21
Andesitic breccia 79.1 94.19 1.19 0.60

Distance to fault (m)
0-500 46.18 56.98 1.23 0.43

1.55 1.58 0.02 0.95 0.02500 - 1000 29.94 20.93 0.7 0.24
>1000 23.87 22.09 0.93 0.32

Land use
Rice Field 16.71 3.49 0.21 0.07

1.23 1.58 0.23 1.03 0.23Plantation 69.08 69.77 1.01 0.33
Settlement 14.21 26.74 1.88 0.61

Distance to river (m)
0–50 33.52 26.74 0.8 0.27

1.56 1.58 0.01 0.98 0.0150-100 25.86 24.42 0.94 0.32
>100 40.62 48.84 1.2 0.41

Rainfall (mm/yr)
< 1800 12.75 3.49 0.27 0.11

1.37 1.58 0.13 0.84 0.111800-2000 39.73 51.16 1.29 0.51
> 2000 47.52 45.35 0.95 0.38

Table 5: Logistic regression coefficient of each parameter in the landslide susceptibility analysis
using the LR approach.

Parameter Logistic regression coefficient

Slope inclination (β1) 1.02
Lithology (β2) 0.365
Distance to fault (β3) -0.503
Land use (β4) 0.916
Distance to river (β5) 0.308
Rainfall intensity (β6) -0.553
Constant (β0) -5.86
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Table 6: Density of landslides in each landslide susceptibility zone.

Susceptibility level Area of susceptibility zone(%) Areaof landslide(%) Densityof landslide

AHP
Low 15.08 1.16 0.08
Moderate 29.91 38.37 1.28
High 55.01 60.49 1.1

SI
Low 11.03 1.16 0.11
Moderate 40.81 23.26 0.57
High 48.15 75.58 1.57

IOE
Low 8.84 2.93 0.27
Moderate 26.33 9.3 0.35
High 65.19 88.37 1.36

LR
Low 22.62 3.49 0.15
Moderate 31.85 31.4 0.99
High 45.53 65.12 1.43
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