Topography and structural changes of Anak Krakatau due to the December 2018 catastrophic events

https://doi.org/10.22146/ijg.53740

Herlan Darmawan(1*), Bachtiar Wahyu Mutaqin(2), Wahyudi Wahyudi(3), Agung Harijoko(4), Haryo Edi Wibowo(5), Nia Haerani(6), Mamay Surmayadi(7), Syarifudin Syarifudin(8), Raditya Jati(9), Suratman Suratman(10), Wikanti Asriningrum(11)

(1) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, Indonesia
(2) 2Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Indonesia
(3) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta, Indonesia
(4) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
(5) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
(6) Center for Volcanology and Geological Hazards Mitigation, Geological Agency, Ministry of Energy and Mineral Resources, Bandung, Indonesia
(7) Center for Volcanology and Geological Hazards Mitigation, Geological Agency, Ministry of Energy and Mineral Resources, Bandung, Indonesia
(8) Bengkulu - Lampung Natural Resource Conservation Agency, Jl. Z.A. Pagar alam No. 1B Rajabasa Bandar Lampung
(9) Indonesian National Board for Disaster Management, Jl. Pramuka Kav. 38 Jakarta Timur 13120
(10) Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Indonesia
(11) Remote sensing application center, National Institute of Aeronautics and Space of Indonesia, Pasar Rebo, Jakarta Timur, Indonesia
(*) Corresponding Author

Abstract


The flank collapse of Anak Krakatau on 22 December 2018 caused massive topography losses that generated a devastating tsunami in Sunda Strait, which then followed by eruptions that progressively changed the topography and structure of Anak Krakatau. Here, we investigated topography and structural changes due to the December 2018 flank collapse and the following eruptions by using high resolution Digital Elevation Model (DEM) before and after the events and sentinel 1A satellite image post-flank collapsed. Results show that the volumetric losses due to the 22 December 2018 flank collapsed is ~127 x 106 m3, while the following eruptions caused ~0,8 x 106 m3 losses. Structural investigation suggests two structures that may act as failure planes. The first structure is located at the western part of volcanic edifice that associated with hydrothermal alteration and the second failure is an old crater rim which delineated an actively deform volcanic cone.

Keywords


Anak Krakatau; the 22 DAnak Krakatau; the 22 December flank collapse; Digital Elevation Model; Topography and structural changesecember flank collapse, Digital Elevation Model, Topography and structural changes

Full Text:

PDF


References

Abdurrachman, M., Widiyantoro, S., Priadi, B., & Ismail, T. (2018). Geochemistry and structure of krakatoa volcano in the Sunda Strait, Indonesia. Geosciences (Switzerland), 8(4), 1–10. doi:10.3390/geosciences8040111

BNPB. (2019). Tsunami Selat Sunda.

Cecchi, E., van Wyk de Vries, B., & Lavest, J. M. (2004). Flank spreading and collapse of weak-cored volcanoes. Bulletin of Volcanology, 67(1), 72–91. doi:10.1007/s00445-004-0369-3

Darmawan, H., Walter, T. R., Brotopuspito, K. S., Subandriyo, & Nandaka, I. G. M. A. (2018). Morphological and structural changes at the Merapi lava dome monitored in 2012–15 using unmanned aerial vehicles (UAVs). Journal of Volcanology and Geothermal Research, 349, 256–267. doi:https://doi.org/10.1016/j.jvolgeores.2017.11.006

Darmawan, H., Walter, T. R., Troll, V. R., & Budi-santoso, A. (2018). Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. NHESS, 3267–3281.

Decker, R. W., & Hadikusumo, D. (1961). Results of the 1960 expedition to Krakatau. Journal of Geophysical Research, 66(10), 3497–3511. doi:10.1029/jz066i010p03497

Deplus, C., Bonvalot, S., Dahrin, D., Diament, M., Harjono, H., & Dubois, J. (1995). Inner structure of the Krakatau volcanic complex (Indonesia) from gravity and bathymetry data. Journal of Volcanology and Geothermal Research, 64(1–2), 23–52. doi:10.1016/0377-0273(94)00038-I

Famin, V., & Michon, L. (2010). Volcano destabilization by magma injections in a detachment. Geology, 38(3), 219–222. doi:10.1130/G30717.1

Gardner, M. F., Troll, V. R., Gamble, J. A., Gertisser, R., Hart, G. L., Ellam, R. M., … Wolff, J. A. (2013). Crustal differentiation processes at Krakatau Volcano, Indonesia. Journal of Petrology, 54(1), 150–182. doi:10.1093/petrology/egs066

Geospasial, B. I. (2018). DEMNAS. Retrieved from http://tides.big.go.id/DEMNAS/

Giachetti, T., Paris, R., Kelfoun, K., & Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geological Society Special Publication, 361(1), 79–90. doi:10.1144/SP361.7

Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N., Grilli, A. R., … Muin, M. (2019). Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Reports, 9(1), 1–13. doi:10.1038/s41598-019-48327-6

Harjono, H., Diament, M., Dubois, J., Larue, M., & Zen, M. T. (1991). Seismicity of the Sunda Strait: Evidence for crustal extension and volcanological implications. Tectonics, 10(1), 17–30. doi:10.1029/90TC00285

Harjono, H., Diament, M., Nouaili, L., & Dubois, J. (1989). Detection of magma bodies beneath Krakatau volcano (Indonesia) from anomalous shear waves. Journal of Volcanology and Geothermal Research, 39(4), 335–348. doi:https://doi.org/10.1016/0377-0273(89)90097-8

Heap, M. J., Troll, V. R., Kushnir, A. R. L., Gilg, H. A., Collinson, A. S. D., Deegan, F. M., … Walter, T. R. (2019). Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nature Communications, 10(1), 5063. doi:10.1038/s41467-019-13102-8

Hoffmann-Rothe, A., Ibs-von Seht, M., Knieß, R., Faber, E., Klinge, K., Reichert, C., … Patria, C. (2006). Monitoring Anak Krakatau Volcano in Indonesia. Eos, 87(51). doi:10.1029/2006eo510002

Hutchinson, M. F. (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106(3), 211–232. doi:https://doi.org/10.1016/0022-1694(89)90073-5

Jaxybulatov, K., Koulakov, I., Seht, M. I., Klinge, K., Reichert, C., Dahren, B., & Troll, V. R. (2011). Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. Journal of Volcanology and Geothermal Research, 206(3), 96–105. doi:https://doi.org/10.1016/j.jvolgeores.2011.06.009

Mayer, K., Scheu, B., Montanaro, C., Yilmaz, T. I., Isaia, R., Aßbichler, D., & Dingwell, D. B. (2016). Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. Journal of Volcanology and Geothermal Research, 320, 128–143. doi:10.1016/j.jvolgeores.2016.04.020

Mcguire, W. J. (1996). Volcano instability: A review of contemporary themes. Geological Society Special Publication, 110(110), 1–23. doi:10.1144/GSL.SP.1996.110.01.01

Meller, C., & Kohl, T. (2014). The significance of hydrothermal alteration zones for the mechanical behavior of a geothermal reservoir. Geothermal Energy, 2(1), 1–21. doi:10.1186/s40517-014-0012-2

Mordensky, S. P., & Heap, M. J. (2019). Influence of alteration on the mechanical behaviour and failure mode of andesite : implications for shallow seismicity and volcano monitoring.

Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H. D., Kriswati, E., Supartoyo, … Arikawa, T. (2019). The December 2018 Anak Krakatau Volcano Tsunami as Inferred from Post-Tsunami Field Surveys and Spectral Analysis. Pure and Applied Geophysics, 176(12), 5219–5233. doi:10.1007/s00024-019-02358-2

Müller, D., Walter, T. R., Schöpa, A., Witt, T., Steinke, B., Gudmundsson, M. T., & Dürig, T. (2017). High-resolution digital elevation modeling from TLS and UAV campaign reveals structural complexity at the 2014/2015 Holuhraun Eruption site, Iceland. Frontiers in Earth Science, 5(July), 1–15. doi:10.3389/feart.2017.00059

Mutaqin, B. W., Lavigne, F., Sudrajat, Y., Handayani, L., Lahitte, P., Virmoux, C., … Boillot-Airaksinen, K. (2019). Landscape evolution on the eastern part of Lombok (Indonesia) related to the 1257 CE eruption of the Samalas Volcano. Geomorphology, 327, 338–350. doi:https://doi.org/10.1016/j.geomorph.2018.11.010

Sudrajat, A. (1982). The morphological development of Anak Krakatau volcano, Sunda Strait. Geologi Indonesia, 9, 1–11.

Sutawidjaja, I. (2006). Pertumbuhan Gunung Api Anak Krakatau setelah letusan katastrofi s 1883. Indonesian Journal on Geoscience, 1(3), 143–153. doi:10.17014/ijog.vol1no3.20063

Szeliski, R. (2010). Computer Vision: Algorithms and Applications.

USGS. (2017). 1980 Cataclysmic eruption. Retrieved from https://volcanoes.usgs.gov/volcanoes/st_helens/st_helens_geo_hist_99.html

Walter, T. R., Haghshenas Haghighi, M., Schneider, F. M., Coppola, D., Motagh, M., Saul, J., … Gaebler, P. (2019). Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nature Communications, 10(1). doi:10.1038/s41467-019-12284-5

Williams, R., Rowley, P., & Garthwaite, M. C. (2019). Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology, XX(Xx), 1–4. doi:10.1130/g46517.1

Zen, M. T. (1969). The state of Anak Krakatau in September 1968. Bulletin of National Institute of Geology and Mining, 2, 15–23.



DOI: https://doi.org/10.22146/ijg.53740

Article Metrics

Abstract views : 4824 | views : 3313

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Herlan Darmawan, Bachtiar Wahyu Mutaqin, Wahyudi Wahyudi, Agung Harijoko, Haryo Edi Wibowo, Nia Haerani, Mamay Surmayadi, Syarifudin Syarifudin, Raditya Jati, Suratman Worosuprojo, Wikanti Asriningrum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC