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Abstract. Addressing the global food demand is an urgent priority for governments worldwide. Efficient and 
effective methods for gauging crop production are crucial. Relying solely on ground-based measurements 
proves inefficient and expensive, prompting exploration of remote sensing using vegetation indices as a viable 
alternative. This study sought to achieve three objectives: estimating chlorophyll content in paddy fields, 
evaluating leaf nitrogen content, and predicting yields. The investigation utilized Sentinel-2A satellite imagery, 
Soil Plant Analysis Development (SPAD) for chlorophyll measurement, and employed statistical and accuracy 
analyses. Findings revealed an increase in chlorophyll and leaf nitrogen content from the vegetative to maturity 
phases, followed by a decline at maturity. NDVI and GNDVI emerged as superior to SAVI and VARI for 
chlorophyll estimation, attributed to their spectral sensitivity. Likewise, nitrogen prediction showed similar 
trends, with NDVI and GNDVI exhibiting better RMSE values compared to SAVI and VARI, albeit marginally. 
However, yield prediction accuracy varied, with NDVI proving most accurate, followed by SAVI, VARI, and 
GNDVI, indicating the latter’s reduced predictive precision due to nitrogen sensitivity. In scenarios where 
nitrogen is not the predominant yield-limiting factor, NDVI could outperform GNDVI in forecasting yield.
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1. 	 Introduction 
Rice (Oryza sativa L.) is an important food crop in 

Indonesia, as it is consumed by approximately 98% of the 
population (Pratiwi, 2022). The two eminent issues related 
to rice production are (1) nitrogen fertilizer management 
(Sharifi, 2020) and (2) crop yield management which is 
significantly influenced by nutrient availability (Urmi et al., 
2022). Compared to other plants, nitrogen (N) is an essential 
element for rice growth. However, excessive use of nitrogen 
fertilizers wastes resources and causes harmful environmental 
consequences because plants only absorb the required 
amounts (Qiu, Yang, Jiang, Xu, & Jiao, 2022). For instance, 
research by Park, et al. (2023) demonstrated that higher 
nitrogen fertilizer application does not always translate into 
higher rice yields. As they also showed that the increase in 
Nitrogen feralization can result in low quality of protein and 
amylose. Additionally, this study found that when nitrogen 
content rose, so did the amount of CO release from the paddy 
field. This shows the need for appropriate management and 
accurate real-time assessment of crop nitrogen status in the 
field to improve yield, efficiency, and crop quality (Wang et 
al., 2023). Remote sensing techniques that utilize spectral and 
thermal methods have been suggested as effective and efficient 
ways to quickly determine crop nitrogen status by analyzing 
vegetation canopy characteristics. According to (Guérif, 

Houlès, & Baret, 2007), reflective sensors are a promising new 
tool for obtaining non-destructive, quick estimates of plant 
nitrogen levels. These observations, especially in the visible 
and near-infrared spectra, can reveal leaf chlorophyll content, 
allowing for early detection of nutrient deficiencies, as canopy 
chlorophyll content closely relates to nitrogen content, linking 
remote sensing data to nitrogen indicators. Additionally, 
nitrogen stress reduces near-infrared reflectance and increases 
visible wavelength reflectance due to reduced chlorophyll and 
other pigments, making vegetation indexes that combine these 
spectral regions highly sensitive tools for detecting nitrogen 
stress and guiding fertilization practices.

Yield estimates are very crucial for maintaining food 
security. One of the data sources that can be used in crop 
yield estimation is remote sensing data. Remote sensing, with 
data of various spatial resolutions available over time, enables 
better predictions of crop yields and the factors responsible for 
these yields. This is because the accurate prediction of yields 
can guarantee the availability of foods for the next. Remote 
sensing plays substantial roles in predicting yields and other 
related phenomena, such as leaf Nitrogen and Chlorophyll 
with temporal coverages. With these characteristics, the 
results of the analysis using remote sensing products is capable 
of providing more accurate data in shorter time period than 
ground survey.  Image analysis with the help of digital analysis 

1.  Introduction 
Urban areas in developing countries, particularly 

in  Southeast Asia, have expanded progressively . Southeast 
Asia is experiencing rapid urbanization, with 294 million 
people living in urban areas. Despite the fact that there are 
numerous metropolitan cities, urbanization in Southeast Asia 
remains to expand massively. United Nations (2019) noted that 
in 2010, 73% of the urban population in the region resided in 
small towns (under 500,000 people) and middle-sized towns 
(500,000 to one million people). The pattern is predicted to 
remain substantially consistent through 2030, when over 
two-thirds of the region’s urban population will be resident in 
small and middle-sized towns (61% and 5.5%, respectively). 
The emergence of small and middle-sized towns, due to 
metropolitan expansion, is home to 22% of the population in 
Southeast Asia.

The development of urban areas exhibits an exceptionally 
dynamic. Urbanization is a prominent expression of the 
dynamics of urban development. Urbanization boosts 
economic performance but harms the environment. The two 
most significant negative consequences of urbanization are 
uncontrolled population growth and excessive urban sprawl. 
Uncontrolled growth tends to increase urban land prices, 
increase pressure on fragile ecosystems, and lead to the 
irreversible degradation of heritage assets  Excessive urban 
sprawl is indicated by increased land conversion both within 
and beyond a city’s administrative boundaries . In turn, this 
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Abstract Recent peri-urbanization, primarily characterized by declining agricultural land and a growing 
population, is a primary driver of peri-urban dynamics. Uncontrolled and excessive rural-urban transition leads 
to detrimental socio-cultural, environmental deterioration, and economic uncertainty due to the emergence 
of urban-oriented activities and needs. These adverse consequences involve complex processes predominantly 
associated to demographic and land-use change. This study investigates the trends of demographic and land-
use changes in the peri-urban area and evaluates the interrelationships between these two factors.  We utilize the 
multi-decade population and land-use transformations from 1990 to 2020 in the peri-urban area of Denpasar 
City – one of the most metropolitan areas in Indonesia. The results reveal that the peri-urban areas encountered 
unprecedented population growth and urban sprawl. According to preliminary findings, the inner peri-urban 
area has experienced more significant population and land-use changes than the outer peri-urban area. 
However, not every demographic trend positively impacts peri-urban land-use change. This explains why land-
use is becoming increasingly distinct from household demographic dynamics, particularly population growth, 
population density, and the number of males and non-productive ages. The reliant relationship between these 
variables implies land-use conversion in peri-urban areas. The outcomes urge each executive decision-maker 
to thoroughly review demographic and land-use change patterns in developing exclusive regional cross-border 
policies to sustain market and long-term peri-urban resource values.
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Abstract. Flood is one of the disasters that often hit various regions in Indonesia, specifically in West Kalimantan. 
The floods in Nanga Pinoh District, Melawi Regency, submerged 18 villages and thousands of houses. Therefore, 
this study aimed to map flood risk areas in Nanga Pinoh and their environmental impact. Secondary data on 
the slope, total rainfall, flow density, soil type, and land cover analyzed with the multi-criteria GIS analysis 
were used. The results showed that the location had low, medium, and high risks. It was found that areas with 
high, prone, medium, and low risk class are 1,515.95 ha, 30,194.92 ha, 21,953.80 ha, and 3.14 ha, respectively. 
These findings implied that the GIS approach and multi-criteria analysis are effective tools for flood risk maps 
and helpful in anticipating greater losses and mitigating the disasters.

©2022  by the authors. Licensee Indonesian Journal of Geography, Indonesia. 
This article is an open access  article distributed under the terms and conditions of the Creative Commons 
Attribution(CC BY NC) licensehttps://creativecommons.org/licenses/by-nc/4.0/.

1. Introductin
Floods occur when a river exceeds its storage capacity, 

forcing the excess water to overflow the banks and fill the 
adjacent low-lying lands. This phenomenon represents the 
most frequent disasters affecting a majority of countries 
worldwide (Rincón et al., 2018; Zwenzner & Voigt, 2009), 
specifically Indonesia. Flooding is one of the most devastating 
disasters that yearly damage natural and man-made features 
(Du et al., 2013; Falguni & Singh, 2020; Tehrany et al., 2013; 
Youssef et al., 2011).

There are flood risks in many regions resulting in great 
damage (Alfieri et al., 2016; Mahmoud & Gan, 2018) with 
significant social, economic, and environmental impacts 
(Falguni & Singh, 2020; Geographic, 2019; Komolafe et al., 
2020; Rincón et al., 2018; Skilodimou et al., 2019). The effects 
include loss of human life, adverse impacts on the population, 
damage to the infrastructure, essential services, crops, and 
animals, the spread of diseases, and water contamination 
(Rincón et al., 2018).

Food accounts for 34% and 40% of global natural disasters 
in quantity and losses, respectively (Lyu et al., 2019; Petit-
Boix et al., 2017), with the occurrence increasing significantly 
worldwide in the last three decades (Komolafe et al., 2020; 
Rozalis et al., 2010). The factors causing floods include 
climate change (Ozkan & Tarhan, 2016; Zhou et al., 2021), 
land structure (Jha et al., 2011; Zwenzner & Voigt, 2009), and 
vegetation, inclination, and humans (Curebal et al., 2016). 
Other causes are land-use change, such as deforestation and 
urbanization (Huong & Pathirana, 2013; Rincón et al., 2018; 
N. Zhang et al., 2018; Zhou et al., 2021).

The high rainfall in the last few months has caused much 
flooding in the sub-districts of the West Kalimantan region. 
Thousands of houses in 18 villages in Melawi Regency have 
been flooded in the past week due to increased rainfall 

intensity in the upstream areas of West Kalimantan. This 
occurred within the Nanga Pinoh Police jurisdiction, including 
Tanjung Lay Village, Tembawang Panjang, Pal Village, Tanjung 
Niaga, Kenual, Baru and Sidomulyo Village in Nanga Pinoh 
Spectacle, Melawi Regency (Supriyadi, 2020).

The flood disaster in Melawi Regency should be mitigated 
to minimize future consequences by mapping the risk. 
Various technologies such as Remote Sensing and Geographic 
Information Systems have been developed for monitoring flood 
disasters. This technology has significantly contributed to flood 
monitoring and damage assessment helpful for the disaster 
management authorities (Biswajeet & Mardiana, 2009; Haq 
et al., 2012; Pradhan et al., 2009). Furthermore, techniques 
have been developed to map flood vulnerability and extent 
and assess the damage. These techniques guide the operation 
of Remote Sensing (RS) and Geographic Information Systems 
(GIS) to improve the efficiency of monitoring and managing 
flood disasters (Haq et al., 2012).

In the age of modern technology, integrating information 
extracted through Geographical Information System (GIS) and 
Remote Sensing (RS) into other datasets provides tremendous 
potential for identifying, monitoring, and assessing flood 
disasters (Biswajeet & Mardiana, 2009; Haq et al., 2012; 
Pradhan et al., 2009). Understanding the causes of flooding 
is essential in making a comprehensive mitigation model. 
Different flood hazard prevention strategies have been 
developed, such as risk mapping to identify vulnerable areas’ 
flooding risk. These mapping processes are important for the 
early warning systems, emergency services, preventing and 
mitigating future floods, and implementing flood management 
strategies (Bubeck et al., 2012; Falguni & Singh, 2020; Mandal 
& Chakrabarty, 2016; Shafapour Tehrany et al., 2017).

GIS and remote sensing technologies map the spatial 
variability of flooding events and the resulting hazards 
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phenomenon contributes to peri-urbanization.
Peri-urbanization is typically a peri-urban phenomenon 

in terms of its scope, geographic distribution, implications, 
and contribution to physical and social transformation 
processes, and it works gradually . One of the outcomes of 
peri-urbanization is the emergence of ‘peri-urban areas,’ 
which are semi-urban settlements  outside of metropolitan 
areas. Peri-urbanization is  a geographic process in rural 
areas surrounding rapidly growing urban areas. This process 
has accelerated rural areas’ physical, social, and economic 
transition  into more urban . Rapid peri-urbanization is 
defined by cities’ immense growth and extension to their 
peripheries, particularly in developing countries. Despite 
numerous advantages, peri-urbanization has disrupted the 
natural balance of agricultural and non-agricultural land-
uses by changing the rural landscape, resulting in a miserable 
deterioration . Thus, peri-urbanization is an inevitable process 
that triggers demographic and spatial changes in peri-urban 
areas.

Demographic change is acquiring prominence in debates 
about development and regional planning, as it is considered 
a determining factor in the future development of peri-urban 
areas . Nonetheless, long-range records on the relationship 
between demographic trends and land-use changes remain 
scarce . Migration –  the most potent factor in population 
growth -  might become  a more influential demographic 
trend that  shapes population size and the transformation of 
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could also improve the consistency and the accuracy of the 
results. Therefore, it is believed to have the capability for 
providing reliable and accurate data to decision-makers for 
determining the strategies that need to be pursued (Ali et al., 
2022; Kaya & Polat, 2023).

Traditional methods for obtaining accurate real-time 
nitrogen status and yield estimates are labor-intensive and 
slow in providing results. In traditional methods, assessing the 
nitrogen status of crops usually involves several approaches, 
such as soil testing, plant tissue analysis, and visual observation. 
In contrast, remote sensing offers a more advanced and 
comprehensive way to evaluate nitrogen status by using 
satellite or aerial imagery to detect variations in crop health 
and nitrogen levels across large areas. Remote sensing provides 
real-time, large-scale data that can complement or even replace 
traditional methods by identifying nitrogen deficiencies more 
quickly and accurately (Wright, Rasmussen, & Ramsey, 2005) 
Therefore, remote sensing techniques have been extensively 
investigated and recommended as an alternative for real-
time non-destructive monitoring of nitrogen status and yield 
prediction in crops (Htun, Shamsuzzoha, & Ahamed, 2023; Xu 
et al., 2023). In remote sensing, vegetation index (VI) is one of 
the techniques that can provide information on nitrogen status 
and yields. Various vegetation indices obtained from remote 
sensing analysis have been reviewed by (Giovos, Tassopoulos, 
Kalivas, Lougkos, & Priovolou, 2021). In practice, the most 
commonly used index is Normalized Difference Vegetation 
Index (NDVI) (Giovos et al., 2021), which is calculated from 
the combination of two bands, namely red and near-infrared. 
(Nakano, Tanaka, Guan, & Ohdan (2023)used NDVI to 
predict rice yield and concluded that the growth stage was 
an important factor during application. Under dense canopy 
conditions, NDVI is easily saturated (Stamford, Vialet-
Chabrand, Cameron, & Lawson, 2023) making it less sensitive 
to high plant physiological and biochemical levels (Qi, Jiang, 
Zhou, Xie, & Huang, 2023). According to previous studies, 
NDVI has some obstacles, as it only accurately provides 
information on the early stages of crop development. Gim et 
al., (2020) stated that the correlation coefficient values for the 
early planting stage are lower than those for the early flowering 
phase. The plant growth stage influences the sensitivity to 
vegetation indices for evaluating the state of a plant, especially 
in the early planting stage when soil background predominates 
(Gnyp et al., 2014) . Strong correlation results depend on the 
leaf area and soil background. This indicates that NDVI is not 
a good indicator of nitrogen management in mature plants. 
Although NDVI is the most commonly used vegetation 
index, it has limitations on the conditions of low and medium 
levels of coverage (Mandla, 2017)due to saturation tendency. 
Green Normalized Difference Vegetation Index (GNDVI) is a 
modified NDVI index used to avoid saturation at a higher leaf 
area index (LAI) (Tiruneh et al., 2022).

The performances of vegetation indices for estimating 
chlorophyll, leaf nitrogen contents and crop yields are 
influenced by the presence or the absence of vegetation, 
as well as biophysical parameters (M, Karegowda, R, & B, 
2022). This phenomenon makes the study of VI in varied rice 
field settings significant in the agricultural sector. Previous 
investigations (Lima, et al., 2021; Wang et al., 2024) assumed 
that the heterogenous rice fields dictated the performance 
of any VIs, potentially leading to variation within a small 
area. In a diverse environment, the amount of vegetation 
cover, the amount of chlorophyll, and other elements that 

VIs use in their computations may differ in different parts 
of the rice fields. Because of this, there may be variations in 
the field’s VI performance, with certain regions exhibiting 
higher correlations between the index values and targeted 
characteristics (such crop yield or chlorophyll content) than 
others. This heterogeneity may be caused by variations in 
topography, pest and disease pressure, soil fertility, and water 
management techniques. Disparities in VI performance can 
also be caused by changes in crop growth phases or planting 
density within the field. In this study, the comparison of NDVI, 
GNDVI, SAVI, and VARI for predicting chlorophyll, nitrogen, 
and yields in rice fields was carried out within a small area in 
Indonesia by using Sentinel 2A images. The study’s use of four 
vegetation indices from sentinel 2A because it makes possible 
to thoroughly examine how well they predict yields, nitrogen, 
and chlorophyll in rice fields, offering insightful information 
for agricultural management and research in Indonesia with 
greater accuracy compared to the previously launched satellite 
images, such as Landsat having coarser resolution.  The Sentinel 
2A image was used due to its open access policy, good spatial 
resolution (10 m), and short time (5 days) of availability (Phiri 
et al., 2020; Sugianto, Rusdi, Budi, Farhan, & Akhyar, 2023). 
This study is significant because of the unique condition of the 
practices of rice cultivation in Indonesia, which is generally on 
small farmers’ land with various management conditions. As 
a results, this needs a different combination of nutrients and 
fertilization management in order to optimum productivity 
(Li et al., 2019). The little amount of land that farmers hold has 
a significant impact on the variety in agricultural techniques 
in Indonesia and in this research location. In fact, the 
majority of farmers are elderly, and there is a great diversity 
in economic and educational backgrounds, which makes it 
challenging to apply novel agricultural techniques. The way 
these small agricultural fields are managed varies as a result. 
Considering the practices in the study area, generally it can 
be said that even in adjacent plots, planting dates, irrigation 
schedules, fertilization schedules, upkeep schedules, and 
harvesting practices differ (Connor et al., 2021). Estimating 
the relationship between chlorophyll, nitrogen, yield, and 
vegetation indices under these conditions is challenging due 
to the limited existing studies. Studies that utilize large areas, 
undoubtedly with smaller scales, cannot encompass the vast 
variability of land conditions and rice crops in narrower areas. 
High variability is highly likely to be found in smaller areas. 
The scarcity of studies addressing this issue is the main reason 
for this research. By using smaller areas but with more detailed 
observation scales, it will be possible to provide more precise 
fertilizer recommendations (such as Nitrogen). Therefore, this 
study aimed to (1) estimate the chlorophyll content on paddy 
fields, (2) estimate nitrogen content, and (3) predict yields. 

2. 	 Methods
The study area, as shown in Figure 1, is a small area located 

in two villages, namely Antirogo and Tegalgede, Sumbersari 
Subdistrict, Jember District, Indonesia. The total area covers 
87.54 Ha, with agriculture serving as the main land use. This 
study was conducted for 5 months, from January to May 2023 
in the rainy season. 

In this study, the two main components of data used were 
primary and secondary data. The primary data consisted of (a) 
field measurement of yield per plot samples (b) leaf samples 
for measuring nitrogen content, and (c) field measurement 
of chlorophyll content by using chlorophyll meter (soil and 
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plant analysis development) Konica Minolta SPAD 502 Plus 
Chlorophyll meter. Figure 2 shows the procedures used in this 
study. The primary data used were (a) sentinel-2A images, 
which had been atmospherically and geometrically corrected 
and were downloaded from https://scihub.copernicus.eu/
dhus/#/home. Furthermore, the three dates of images used 
were (a) January 20th 2023, (b) February 15th 2023, and (c) 
March 16th 2023. 

Figure 2 showed the data analysis procedure used in 
this study. Downloaded images were analyzed by using four 
vegetation indices (VIs), namely  NDVI, GNDVI, Soil Adjusted 
Vegetation Index (SAVI), and Visible Atmospherically 
Resistant Index (VARI). The formula of the VI’s is represented 
at Table 1. 

These vegetation indices played a central role in achieving 
(1) Chlorophyll estimation, (2) Leaf Nitrogen concentration, 
and (2) yield prediction. To achieve the first and second aims, 
regression model was employed, while multiple regression was 
undertaken to determine the relationship between yields and 
the best vegetation indices. The relationship between yields, 
nitrogen content, and chlorophyll content and vegetation 
indices (e.g., NDVI, GNDVI, SAVI, and VARI) can be 
quantitatively analyzed using regression models. They make 
it easier to anticipate these factors using vegetation indices, 
highlight important correlations, and offer findings that are 
easy to interpret. 

The best vegetation indices were determined from the 
results obtained through the analysis of nitrogen and vegetation 

Figure 1. Study area

Figure 2. The procedure of data analysis
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indices. This resulted in the single best vegetation index, which 
was used to determine the relationship between rice yield and 
vegetation indices. Observation of the leaf nitrogen content, 
chlorophyll content, and vegetation index was carried out 
three times, at 10, 40, and 70 days after planting (DAP). Based 
on the requirements, the age of planting was considered when 
selecting the sample sites. For each observation, 15 sample 
points were acquired, resulting in a total of 45 samples. The 
yield at 90 DAP of the rice was also observed using a total 
of 45 GPS-determined sample locations. Subsequently, the 
purposive sampling approach was used to determine the 
sample points. This approach is a sample selection technique 
with a more particular target in line with the study issue and 
the goals, which is assumed to be representative.

3. 	 Result and Discussion 
3.1  	The Development of Vegetation Indices 

Table 2 showed the variation of vegetation indices from 
three observations (O1, O2 and O3) conducted in the study 
area. Based on the results, different values ranging from O1 to 
O3 were identified, where O2 had higher values compared to 
those in O1 and O3 for chlorophyll, nitrogen, and vegetation 
indices. This was due to an increase in chlorophyll content in 
line with the development stages of rice. In this case, O1, O2, 
and O3 were related to the vegetative, generative, and maturity 
stages of rice development. The following are possible  causes 
and these seems to agree with findings of the study conducted 
by Manessa, et al., (2023) as follow : (a) Rice plants frequently 
show an increase in chlorophyll content during the shift 
from the generative to the reproductive stages, which results 
in the changes in greenness that can be measured using 
indices like the NDVI and GNDVI; (b) Rice plant canopies 
have a tendency to grow and thicken during the generative 
phase, which is marked by bigger leaves. Higher values of 
vegetation indices, which are impacted by canopy structure, 
such as NDVI, GNDVI, SAVI, and VARI, are a result of this 
increased canopy density and foliage size; (c) Rice plants must 
absorb more nutrients during the generative phase in order 
to grow reproductively. Higher values of vegetation indices 

are usually the consequence of healthier and more vigorous 
plants, which is brought about by this increased nutrient 
intake; (d) The effect of soil reflectance on vegetation indices 
like SAVI and VARI decreases as the rice canopy grows and 
covers more area during the generative phase. Because these 
indices are especially intended to counteract the impacts of 
soil background, their values have been seen to rise during 
this phase. 

Figure 3 shows the development of vegetation indices. As 
shown, SAVI exhibited the highest value, while the lower values 
were observed in VARI, GNDVI, and NDVI. Meanwhile, VARI 
had the lowest values because the index did not use the near-
infrared band and only the visible band was employed.  The 
reason for this is that because it accounts for soil background 
effects, SAVI (Soil-Adjusted Vegetation Index) usually 
produces higher numbers. SAVI adjusts for soil background 
affects by adding a soil adjustment factor, which raises index 
results. Therefore, this is most likely to relate to the presence of 
water and varied soil conditions in paddy fields. The significant 
overlap of NDVI and GNDVI was observed at the start of the 
graph in Figure 3. This showed that GNDVI was not capable 
of distinguishing the vegetation and the soil background in 
10 DAP (Days After Planting). (Rehman, Lundy, & Linquist, 
(2022) stated that GNDVI is suitable for the assessment of the 
vegetation index in the maturity stage. Therefore, low values 
of GNDVI at 10 DAP were obtained because the rice was still 
at the beginning stage of development. Field evidence also 
showed that at 10 DAP, rice was still at the vegetative stage 
and the soil and water background backgrounds were the 
dominant feature. Consequently, the values of the reflectance 
were also dominated by soil and water reflectance’s (Sukojo and 
Kurniawan, 2021). In O2 and O3, NDVI and GNDVI were in 
close values, with the GNDVI exhibiting greater values. Figure 
1 showed more distinct values of indices in O2 (peak values), 
gradually decreasing as the rice matures. Bautista et al., (2022) 
had identified a generative period (which is coincide with O3 
in this study) for rice to reach the peak NDVI, followed by a 
decrease in the values toward maturity. 

Table 1. Vegetation indices formula
No Vegetation Indices Formula References

1 Normalized Difference Vegetation 
Index (NDVI)

(Rouse et al., 1974, as cited in Somvanshi 
& Kumari, 2020)

2 Green Normalized Difference 
Vegetation Index (GNDVI)

(Gitelson et al., 1996, as cited in Radočaj, 
Šiljeg, Marinović, & Jurišić, 2023)

3 Soil Adjusted Vegetation Index (SAVI) (Huete, 1988, as cited in Somvanshi & 
Kumari, 2020)

4 Visible Atmospherically Resistant 
Index (VARI)

(Gitelson et al., 2002, as cited in, Meivel & 
Maheswari, 2022)

Table 2. The average of chlorophyll content, nitrogen, and vegetation indices on different observation times (O1, O2, and O3)

Observation Chlorophyll Nitrogen
Vegetation Indices

NDVI GNDVI SAVI VARI

O1 34.95 2.41 0.3233 0.3300 0.4848 -0.0034

O2 44.82 3.38 0.5884 0.5024 0.7592 0.1790

O3 28.96 2.13 0.4361 0.3850 0.6506 0.1141
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3.2 The Relationship between Vegetation Indices and 
Chlorophyll Content
Figure 4 showed the relationships between vegetation 

indices and chlorophyll of the 45 samples, with R2 values of 
0.3994(NDVI), 0.3974 (GNDVI), 0.3627 (SAVI), and 0.3076 
(VARI). These values are expected because using spectral 
bands that are extremely sensitive to both the total density of 
vegetation and the amount of chlorophyll, NDVI and GNDVI 
are computed. These indexes take advantage of the difference 
between visible and near-infrared (NIR) green bands, which 
are substantially absorbed and reflected by healthy vegetation, 
respectively. They are able to accurately record changes in the 
health of the vegetation because of their sensitivity. However, 
the near-infrared band is not included in the VARI (Visible 
Atmospherically Resistant Index), which only uses visible 
bands (Nuthammachot & Stratoulias, 2023). Therefore, 
in contexts such as rice fields, where vegetation qualities 
frequently show higher responses in the near-infrared 
band, it may not be able to accurately capture vegetation 
characteristics. Lower VARI values result from this restriction 
when compared to indices that include near-infrared data. 
The different of R2 between SAVI and VARI can be due to the 
environmental reason, such as soil moisture, canopy structure, 
and atmospheric influences. SAVI’s may provide a more 

accurate representation of chlorophyll content under diverse 
environmental conditions, leading to stronger correlations 
compared to VARI. This diverse environmental condition 
may be attributed to the differences in farming practices, 
such as fertilizer applications and irrigation. This diverse 
environmental condition may also be caused by different kind 
of fertilizer applications. Consequently, the performances of 
rice on all farmer fields were different, resulting in greater 
variabilities.

3.3.	 The Relationship between Vegetation Indices and 
Nitrogen 
Figure 5 illustrated the relationship between vegetation 

indices and leaf nitrogen contents, with R2 values of 0.4406 
(NDVI), 0.426 (GNDVI), 0.3982 (SAVI), and 0.3457 (VARI). 
This pattern of values seemed to be similar to those for the 
relationship between vegetation indices and chlorophyll. 
However, higher values were found on the relationship 
between vegetation indices and nitrogen. The contribution 
of vegetation indices on the predicted values of nitrogen 
were 44.06% (NDVI), 42.6% (GNDVI), 39.82% (SAVI), 
and 34.57% (VARI), respectively. This analysis suggests that 
while chlorophyll concentration is a major factor in NDVI 
measurements, there is often a stronger link between NDVI 
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 Figure 3 shows the development of vegetation indices. As shown, SAVI exhibited the highest value, while 

the lower values were observed in VARI, GNDVI, and NDVI. Meanwhile, VARI had the lowest values because 

the index did not use the near-infrared band and only the visible band was employed.  The reason for this is that 

because it accounts for soil background effects, SAVI (Soil-Adjusted Vegetation Index) usually produces higher 

numbers. SAVI adjusts for soil background affects by adding a soil adjustment factor, which raises index results. 

Therefore, this is most likely to relate to the presence of water and varied soil conditions in paddy fields. The 

significant overlap of NDVI and GNDVI was observed at the start of the graph in Figure 3. This showed that 

GNDVI was not capable of distinguishing the vegetation and the soil background in 10 DAP (Days After Planting). 

(Rehman, Lundy, & Linquist, (2022) stated that GNDVI is suitable for the assessment of the vegetation index in 

the maturity stage. Therefore, low values of GNDVI at 10 DAP were obtained because the rice was still at the 

beginning stage of development. Field evidence also showed that at 10 DAP, rice was still at the vegetative stage 

and the soil and water background backgrounds were the dominant feature. Consequently, the values of the 

reflectance were also dominated by soil and water reflectance’s (Sukojo and Kurniawan, 2021). In O2 and O3, 

NDVI and GNDVI were in close values, with the GNDVI exhibiting greater values. Figure 1 showed more distinct 

values of indices in O2 (peak values), gradually decreasing as the rice matures. Bautista et al., (2022) had identified 

a generative period (which is coincide with O3 in this study) for rice to reach the peak NDVI, followed by a 

decrease in the values toward maturity.  
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and nitrogen content. The complicated roles that nitrogen plays 
in plant physiology, such as its crucial role in the production 
of chlorophyll and its broader effects on the general health and 
vigor of plants, can be used to explain the stronger correlation 
observed between NDVI and nitrogen. Nitrogen influences 
not just the synthesis of chlorophyll but also other critical 
variables such as canopy shape and leaf area index (LAI), 
which have a more direct and extensive impact on NDVI 
values. For example, studies by Amirhusin et al., (2023) and 
Hussain, et al., (2022) have demonstrated how nitrogen affects 
rice height and tiler development. As a result, nitrogen is the 
most important nutrient of all, having a significant impact on 
plant growth, development, and overall quality. The analysis’s 
findings also suggested that nitrogen tends to have a more 
uniform geographical distribution in plants, which enhances 
the nutrient’s consistency with the NDVI. On the other hand, 
chlorophyll has a significant, albeit occasionally indirect, 
influence on the NDVI since it is the primary pigment in 
photosynthesis. 

Based on the results of three observations at different 
age stages, NDVI exhibited the best vegetation index for 
assessing nitrogen uptake in rice due to its highest correlation 
coefficient, while the lowest was obtained in VARI. The NDVI 
method compared visible red and near-infrared wavelengths 
to determine plant green levels. This indicated that the greater 
the NDVI values, the more active the photosynthetic process 
(Phyu et al., 2020). A high NDVI index value indicates a low 
reflection of visible red radiation due to chlorophyll absorption, 

with a high near-infrared reflectance from leaves (Irfan et al., 
2018).The NDVI method can assess nitrogen uptake in plants 
based on spectral values recorded and calculated. The strong 
relationship between NDVI and Chlorophyll content found in 
this study seems to agree with the finding by Padhan et al., 
(2023) who stated that the relationship between these two 
variables in rice crop showed strong correlation

The VARI vegetation index algorithm relying on the visible 
spectrum made it less ideal for calculating nitrogen uptake.  
Stressed leaves are more compact in reflecting near- infrared 
light compared to healthy leaves. Therefore, combining visible 
light and near- infrared algorithms yielded better performance 
in detecting the greenness of rice plants compared to the use of 
only the visible light algorithm (Gnyp et al., 2014).

Figure 6 showed the comparison between the actual and 
the predicted leaf nitrogen content, indicating a s difference 
between these two. The difference in values was caused by 
several factors, including the background factor of inundated 
soil. The pixel component in the captured image also affected 
the index value (Huang, Tang, Hupy, Wang, & Shao, 2021)
The image resolution used in this study was 10 x 10 m in 
size, indicating that the pixel area was 100 m2. The diversity 
of objects in one pixel also affected the index value obtained 
(Waleed et al., 2022).  Each pixel represented one sample with 
the desired planting age, while other lands in the same pixel 
had different planting ages. This discrepancy can lead to an 
under-representation of samples in one pixel.
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and Hussain, et al., (2022) have demonstrated how nitrogen affects rice height and tiler development. As a result, 

nitrogen is the most important nutrient of all, having a significant impact on plant growth, development, and 

overall quality. The analysis's findings also suggested that nitrogen tends to have a more uniform geographical 

distribution in plants, which enhances the nutrient's consistency with the NDVI. On the other hand, chlorophyll 

has a significant, albeit occasionally indirect, influence on the NDVI since it is the primary pigment in 

photosynthesis.  
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The accuracy of the obtained equation model was assessed 

by calculating the root mean square error (RMSE) value to 
determine the error rate of the estimation, as presented in 
Table 3. Based on the RMSE values, the NDVI index had the 
lowest error value, although all values of RMSE are comparably 
similar.   A smaller RMSE value indicates a better performance 
because the error rate is less. These results showed that the best 
vegetation index for estimating nitrogen uptake in rice plants 
was NDVI. Despite variations in leaf nitrogen content in rice, 
these differences do not impact the values of the vegetation 
indices. This aligns with the findings of (Chowdhury et al., 
2024) who reported that different nitrogen treatments (120, 
160, 200, and 240 kg N/ha) resulted in similar values for 
the vegetation indices (NDVI, RVI, NDRE, and GNDVI) 
throughout the rice growth stages. 

3.4 	 Spatial Distribution of Vegetation Indices 
Figure 7 illustrated the distribution of greenness obtained 

from the analysis of four vegetation indices for the ages of 
rice 10 DAP (vegetative), 40 DAP (generative), and 70 DAP 
(ripening). Table 4 showed the acreage (Ha) of each greenness 
class, where the pattern on the value of indices was in 
observation 2. There was also an increasing tendency of the 
area from very low to moderate greenness for four vegetations, 
indicating the canopy development of rice. 

Based on direct field observations, the rice has entered 
the generative phase, with panicles emerging while the leaves 
remain green, as shown in Figure 5c. Some rice leaves have 
started to yellow, indicating the grain ripening stage, and 
a few rice plants are nearing harvest. The NDVI and SAVI 
vegetation indices have shown significant changes compared 
to the GNDVI and VARI indices.

Table 3. The accuracy of leaf nitrogen estimation
No Vegetation Indices RMSE
1 NDVI 0.5108
2 GNDVI 0.5175
3 SAVI 0.5299
4 VARI 0.5525

10 DAP 40 DAP 70 DAP Classification

NDVI

GNDVI

SAVI

VARI

Figure 7. Spatial distribution of vegetation indices
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Each index changes with each growth phase, but NDVI 

and SAVI more accurately reflect the field conditions. The 
VARI index is less indicative of these conditions because it 
only uses visible light, specifically Bands 2 (Blue), 3 (Green), 
and 4 (Red) and VARI  does not incorporate Band 8 (Near 
Infrared). In contrast, the NDVI, GNDVI, and SAVI indices 
utilize Band 8 (Near Infrared) in their calculations. The Near 
Infrared spectrum is crucial for accurately representing 
vegetation conditions. According to Hisham, et al. (2022) the 
Near Infrared spectral effectively represents the condition of 
rice leaves, which is highly reflected during the generative 
phase, resulting in high greenness levels, while visible light is 
largely absorbed by plants for photosynthesis, as evidence in 
Table 4 in Observation 3 with the higher values of greenness.

3.4 	 Yield Prediction
The value used to calculate productivity was milled dry 

grain (MDG) in tons/ha, obtained by converting the grain 

weight value of each tile. The average productivity was obtained 
at 6.10 tons/ha MSG and the Inpari 32 variety had a general 
average yield of ±6.30 tons/ha. Therefore, the production was 
still below standard with a 98% percentage of achievement of 
the general average. One of the factors ccontributing to the 
lower percentage of productivity was due to the application of 
fertilizer that did not meet the standards of the Balai Penelitian 
dan Pengembangan Pertanian (2020). The amount of fertilizer 
applied in the study area with the Urea fertilizer is 250 kg/ha, 
which is still in below the recommended standard (300 kh/
Ha) by Balai Penelitian dan Pengembangan Pertanian (2020). 
Considering this, lack of Urea fertilizer could be the main 
reason for low rice productivity in the study area.

Multiple regression analysis was used to determine the 
predicted yields and NDVI was used. The results showed that 
by considering the values NDVI from the first, second, and 
third observations with yield data, the correlation coefficient 
(r) 0.8 was obtained, indicating a very strong relationship. 

(a)	 10 DAP (b)	 40 DAP

(c)70 DAP

Table 4. The areal distribution of greenness in the study area

Observation Vegetation Index
Vegetation Area (Ha)

Non Vegetated Very Low 
Greenness

Low 
Greenness

Moderate 
Greenness

High 
Greenness

1

NDVI 31.25 30.23 24.79 0.98  0
GNDVI 3.91 52.84 29.47 1.11  0

SAVI 35.44 24.72 21.59 5.57  0
VARI 0.01 58.45 28.90  0  0

2

NDVI 2.00 8.52 33.15 43.63  0
GNDVI 0.78 9.14 37.19 40.13 0.01

SAVI 2.32 7.49 22.07 49.59 5.85
VARI 0.01 4.07 78.62 4.62  0

3

NDVI 4.85 20.34 55.36 6.71  0
GNDVI 1.91 23.65 56.75 5.00  0

SAVI 5.86 15.94 44.33 21.09 0.01
VARI 0.01 10.45 76.05 0.82  0
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Furthermore, the coefficient of determination (R2) was found 
at the value of 0.65. The results of the multiple regression 
equation between the NDVI vegetation index and rice 
productivity were formulated as follows:

y=0,76x1+4,96x2-1,8x3+3,73

in this case 

y   yields prediction

x1 : NDVI Observation 1

x2 : NDVI Observation 2

x3 : NDVI Observation 3

The equation model obtained was, then used to calculate 
the estimated productivity of rice plants in Figure 8. The 
estimation results of rice productivity from the multiple 
regression analysis equation model were validated by 
calculating the RMSE value to determine the error in Table 
5. Based on the results, the NDVI vegetation index had the 
lowest RMSE value, indicating that the closer the values to 
zero, the smaller the error. It is apparent form the results that 
by utilizing NDVI data from several observations during rice 
growth, accurate estimate of crop yields can be established due 
to the capability in capturing the complexity and diversity of 
vegetation dynamics.  Similarly, Htun et al., (2023) stated rice 
productivity was more accurately predicted by using multiple 
regression. This indicated that the estimated values of rice 
productivity using the NDVI were close to the actual ones, 
therefore, it was considered an acceptable correlation. These 
results seem to disagree with that of the relationship between 
Nitrogen and used Vegetation Indices as shown before which 
may be due to the fact that rice yields are affected by other 
factors other than Nitrogen. 

Employing machine learning techniques may produce 
predictions that are more accurate than those made with 
traditional multiple regression models as shown in this 
study. However, sufficient data on soil properties, climate 

variables, and rice plants are still lacking to provide reliable 
machine learning prediction.  Joshua et al.’s (2021) claims that 
machine learning methods such as Support Vector Machines, 
General Regression Neural Networks (GRNNs), Radial 
Basis Functional Neural Networks (RBFNNs), and Back-
Propagation Neural Networks (BPNNs) require a substantial 
amount of data in order to predict rice yields, such as rainfall, 
temperature, soil properties, urea, and the elements nitrogen, 
phosphorous, and potassium. As a result, further investigation 
into machine learning methodologies through comprehensive 
compilation of relevant data will be conducted in the future. 

4. 	 Conclusion 
Studying vegetation indices in relation to chlorophyll, 

nitrogen, and crop yield in small areas with varied crop 
management is challenging. The results indicate that NDVI 
and GNDVI contribute more to chlorophyll content estimation 
than SAVI and VARI, highlighting their spectral sensitivity. 
Similar trends were observed for nitrogen prediction, with 
NDVI and GNDVI showing better RMSE values than SAVI 
and VARI, though the differences were small. However, yield 
prediction accuracy differed, with NDVI being the most 
accurate, followed by SAVI, VARI, and GNDVI being the 
least accurate. This suggests that while GNDVI is sensitive to 
nitrogen, its complex relationship with yield may reduce its 
predictive accuracy compared to the broader vegetation health 
captured by NDVI. If nitrogen is not the primary yield-limiting 
factor, NDVI might outperform GNDVI. For further study, 
it is recommended to investigate additional yield-limiting 
factors, conduct focused studies on GNDVI under varying 
nitrogen levels, implement long-term studies across different 
seasons and possbly apply machine learning techniques, and 
investigate spatial and temporal variability of indices.
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Table 5. The accuracy yield prediction 
No Vegetation Indices RMSE
1 NDVI 0.1421
2 GNDVI 0.5258
3 SAVI 0.4701
4 VARI 0.5030
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