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Abstract. Lineament is one of the most important features showing subsurface elements or structural 
weakness such as faults. is study aims to identify subsurface lineament patterns using automatic lineament 
in Citarum watershed with gravity data. Satellite gravity data were used to generate a sub-surface lineament. 
Satellite gravity data corrected using Bouguer and terrain correction to obtain a complete Bouguer anomaly 
value. Butterworth �lters were used to separate regional and residual anomaly from the complete Bouguer 
anomaly value. Residual anomaly gravity data used to analyze sub-surface lineament. Lineament generated 
using Line module in PCI Geomatica to obtain sub-surface lineament from gravity residual value. e 
orientations of lineaments and fault lines were created by using rose diagrams. e main trends observed in 
the lineament map could be recognized in these diagrams, showing a strongly major trend in NW-SE, and 
the subdominant directions were in N-S. Area with a high density of lineament located at the Southern part 
of the study area. High-density lineament might be correlated with fractured volcanic rock upstream of the 
Citarum watershed, meanwhile, low-density lineament is associated with low-density sediment. e high-
density fracture might be associated with intensive tectonics and volcanism.  

1. Introduction  
Area of approximately Seven thousand four hundred 

square kilometers, divided into three parts; the upper part 
(1771 squared kilometer), the middle part (4242 km2), the 
lower part (1387 square kilometer) (Juwana et al., 2016a). e 
average watershed rainfall is 2300 mm/year, and the Citarum 
�ow measured by the Saguling Dam is around 5.7 billion m3/
year (Juwana et al., 2016b). In 2008, there were just over 11 
million people in the watershed. Most live on the Riverbanks 
and have used it directly in different domestic applications 
(Juwana et al., 2016b). e river runs through Jakarta and 
West, two central provinces. Water companies in the 
watershed also use the river as the raw water source for their 
water treatment plants(Juwana et al., 2016b). 

A lot of Citarum researchers (Agaton et al., 2016; 
Djuangsih, 1993; Harashina et al., 2003; Herawati et al., 2016; 
Juwana et al., 2016a; Nastiti et al., 2015; Parikesit et al., 2001; 
Sunardi et al., 2012). None of them concerns the mapping of 
sub-surface geological structures. e mapping of geological 
structures in the area, particularly in areas with insufficient 
outcrop exposures, can take time and are difficult (Yeomans 
et al., 2019). Moreover, partial exposure and subtle 
topographic variation structures such as severe defects can be 
complicated to map a geologist on the �eld. Lineament 
detection can aid the mapping of geological structures 
(Yeomans et al., 2019). A lineament is a mappable rectilinear 
or curvilinear linear feature of a surface, distinct from 
adjacent patterns, representing a subsurface phenomenon 
(O'Leary et al., 1976). Lineaments are linear features evident 
at the land surface that express the underlying geological 
structure (Ibrahim & Mutua, 2012).  It is a linear or 

curvilinear mappable feature on a surface whose parts are 
aligned in a straight or somewhat curved relation due to a 
defect or other line defect (Ibrahim & Mutua, 2012). e 
surface characteristics that form a lineament can be 
geomorphological, i.e., relief or tonal differences i.e. (Hung et 
al., 2005, Haryono et al., 2016). Remotely sensed data, 
including satellite imaging, and airborne geophysical data, 
are usually used to map regionals (Yeomans et al., 2019). In 
addition, these lineaments may be used as a basis to infer the 
region's structural geology, with implications for mineral 
exploration (Moore and Camm, 1982; James et Moore, 1985; 
Ni et al., 2016; Verdiansyah, 2019), oil exploration (Peña and 
Abdelsalam, 2006). (Rutzinger et al., 2007). e conventional 
techniques of linear extraction include manual scanning of 
linear features. In addition, optical images are commonly 
used, but they take time, are subjective, and are reproductive 
inadequate (Masoud and Koike, 2006; Scheiberet al., 2015). 

There are various applications for potential field methods 
(Zhdanov, 2002; Mehanee and Zhdanov, 2002; Abdelrahman 
et al., 2004; Zhdanov et al., 2004; Essa et al., 2008; Mehanee et 
al., 2011; Mehanee, 2014, Mehanee, 2015; Biswas, 2017; 
Zhang et al., 2018, Essa and Elhussein, 2018). In many 
geophysical prospect areas, particularly in the determination 
of the crystalline basement depth (Abdelrahman and Essa 
2015a; Yangfan Deng et al., 2016), which define structural 
environments, gravity and magnetic processes have been 
presented as beneficial results (Abdelrahman and Essa, 
2015b; Gabtni et al., 2016), Exploring and delineating gravity 
and magnetic resources on minerals, hydrocarbons and 
geothermals (Eseas, 2007 and 2011; Khazri and Gabtni, 2018) 
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(Essa, 2014; Mehanee and Essa, 2015; Abo-Ezz and Essa, 
2016; Essa and Elhussein, 2017). For many subsurface 
investigations, gravity methods have been used (Araffa et al., 
2015; Fallatah et al., 2019; Kurniawan, 2012; Mansour et al., 
2018; Mohamed, 2019; Mukherjee & Ramachandran, 2018; 
Yang et al., 2019). Some researchers have been using gravity 
satellite information in their research (Álvarez et al., 2013; 
Chambers 2015.; Chen et al., 2014.; Holzrichter & Ebbing, 
2016; Noréus et al (1997); Publishers & Kingdom, 1991.  

For several decades, the automation in structural geology 
of remotely sensed data geological mapping has served as a 
central research topic (Yeomans et al., 2019). Automation 
overcomes time and subjectivity issues that influence the 
manual approach. While fully automatic methods go beyond 
current computer algorithms, semi-automatic techniques 
rapidly improve (Yeomans et al., 2019). An early critique of 
semi-automatic methods included misconceptions about 
roads and field borders in specific environments, as well as 
the adverse effects of vegetative cover (Yeomans et al., 2019). 
More elaborate processing and non-optical datasets such as 
airborne geophysical data, in particular, magnetic data 
(Middleton et al., 2015), electromagnetic data (Paananen, 
2013), radiometric data (Debeglia et al.,2006), and gravity 
data can now be circumvented (Lahti et al., 2014).  

Satellite imagery and gravity datasets can detect 
lineaments (Francés et al., 2014; Nur et al., 2017). Application 
of Sobel and gradient are various techniques including. The 
second is an automated linear extraction, where the image is 
automatically processed by specifying different parameters, 
such as the curve length, the connection of distance, kernel 
size. There are two main methods of removing lineaments 
from satellite images: (Nur et al., 2017). LINE from PCI 
Geomatica has been the most popular processing tool in 
recent years. This study aims to identify sub-surface linear 
models in the Citarum watershed with gravity data using 
automatic lineaments. 
 
2. Method 
is research was conducted in the Citarum watershed with 
the geographical location at coordinates 106°57’50.869” – 
107°56’59.669” dan 5°54’53.468 – 7°14’38.517”. Gravity data 
obtained are from UCSD TOPEX satellite imagery. TOPEX 
has been used by many researchers (Bansal et al., 2005; 
Kurniawan, 2012; Noréus et al., 1997; Paolo & Molina, 2010). 
TOPEX UCSD has precision per unit second with a distance 
of 30-40 mm with a gravitational �eld resolution of 4-6 mGal. 
e basic concept of gravimetric satellites is detecting 
changes in Earth's gravity �eld by monitoring changes in 
distance that occur between pairs of 2 gravimetric satellites in 
their orbits (Chambers, 2015). The two satellites travel along 
an orbit path of approximately 220 kilometers between one 
and the second satellite. These satellites are connected to the 
exact distance by a K-band microwave link, and how 
significant the change is better than 1 micrometer per second 
with accuracy. 

Both satellites feature a star camera and an accelerometer 
to see the exact movement and altitude because of the 
satellite's non-gravity force. In the meantime, a GPS installed 
in the two pairs of satellites determines satellite positions and 
speed. The accuracy of the gravimetric satellite is 1 cm in 
height, and one mGal in gravity anomalies is even less on the 
ground surface on the spatial grid of 100 kilometers (Chelton 

et al., 2001). The data obtained in the form of the free air 
anomaly values is then processed by terrain correcting and 
correction of bouguers to generate a cross-section of regional 
anomalies and remaining anomalies. Finally, fortified fault 
structure estimation is done through quality analysis, namely 
sub-surface structure modeling.  
 
Complete Bouguer Anomaly Gravity 
According to Martín et al. (2011), Bouguer gravity anomalies 
were calculated with the equation that defines from  
Heiskanen and Moritz (1967), Figure 1.: 

                         (1) 
Terrain correction tools provided by Geoso Oasis Montaj 
were used to obtain the C value (Terrain Correction). B is the 
Bouguer correction that can be calculated using this 
equation: 

             (2) 
ρ is the crustal density (2.67 gr/cm3) used in the Bouguer 
correction and H is the height of the point in meters and K 
were universal gravitational constant. Complete Bouguer 
Anomaly values have been gridded with the Minimum 
Curvature Gridding (MCG) module provided by Geosoft 
Oasis Montaj software. The minimum curvature gridding 
method used by Briggs (1974) was first employed according 
to Martínez-moreno et al. (2015). The algorithm was later 
drawn up by Swain (1976) and modified by Webring (1981). 
It is based on a two-dimensional differential equation for 
disassembling a thin sheet, which is equivalent to a third-
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Figure 1. Complete Bouguer Anomaly Gravity 
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order spline, under the influence of the point forces (Briggs, 
1974). The gravity measurements were filtered over the field 
of study to calculate the regional trend (Mickus et al., 1991). 
The Complete Bouguer anomaly (CBA) value is the regional 
and residual anomaly accumulation value. Butterworth filter 
was used to distinguish between regional and residual 
anomaly.  
 
Butterworth Filter 

Butterworth filters are known as maximally flat filters, 
according to Ellis (2012), because they have the sharpest 
possible roll-off without causing a peak in the Bode plot. The 
second-order Butterworth filter is the two-pole filter with a 
damping ratio of 0.707. Butterworth filters are used because 
of their ability to peak in control systems. It is conservative 
in removing all peaks from the filter. Allowing specific peaks 
may be advantageous as it allows an equal attenuation of 
lower frequencies with more minor phase delay. The 
Butterworth filter is nevertheless a natural choice in order to 
organize the many pole higher-order filter systems. 

is is the equation for odd orders of butterworth: 

  (3) 
П it means the result (product), M its mean the orders of 
�lter 
 
Lineament 

Various techniques have been developed to obtain the 
terrain's linear characteristics and geomorphology (Nur et 
al., 2017). This paper shows an automatic lineament with 

edge enhancement, followed by a sharpening technique that 
gives the best outcome of non-human eye lines, and applies 
the PCI Geomatica V9.1 Line module to recognized 
lineaments. Edge-sharpening improvements make for 
analysis forms and details (Richards, 1986). The PCI 
Geomatics software package used edge sharpening. Finally, 
for automatic lineament extraction, final images from the 
study area were used. PCI geomatica have features of edge 
detection, thresholding, and curve extraction processes are 
part of the lineament extraction algorithm. There is some 
default parameter in the LINE feature of Geomatica 
software: RADI (Radius of filter in pixels), GTHR(Threshold 
for edge gradient), LTHR(Threshold for curve length), 
FTHR (Threshold for fitting line error), ATHR(Threshold 
for angular difference), and DTHR(Threshold for linking 
distance) (PCI Geomatica, 2001). Multiple line maps with 
different threshold values were generated. Those lineaments 
were considered default lines, and the best threshold values 
were selected (below). In order to determine threshold 
values, general characteristics were taken into account, such 
as length, curvature, segmentation, separation, and so on.  
 
3. Result and Discussion  

e range of gravity values is about 14.1 to 90.9 mGal 
(Figure 1). e lowest anomaly value is 14.1 mGal and the 
highest is 90.9 mGal. In general, the gravity anomaly values 
can be categorized into low, medium, high and very high 
anomaly values. Low anomaly value in the range of 14.1 to 
25.6 mGal which is indicated in dark blue to light blue. e 
anomaly value is about 25.6 to 43.2 mGal which is indicated 
in light green to dark brown. e high anomaly is about 43.2 
to 90.9 mGal. which is indicated by dark red to light red. e 

Figure 2. Gravity anomaly (a) Residual (b) Regional 
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residual anomaly map Figure 2(a), shows that the range of 
gravity values is about 17.6 to 10 mGal. e lowest anomaly 
value is -17.6 mGal and the highest is 10 mGal.  

Regional anomaly maps re�ect intense subsurface 
conditions. In contrast, residual anomaly maps describe the 
shallow sub-surface information. Based on regional anomaly 
maps, the southern part of the study area tends to be 
dominated by high anomaly values (43.2 to 90.0 mGal). e 
northwestern  study area also has a high anomaly, but not 
higher than the southern part of the study area (30 mGal to 
50 mGal). Medium anomaly zones tend to �ll the central part 
of Citarum Watershed, northwestern and northeastern part 
of the regional anomaly map (28 mGal to 35.8 mGal). Low 

anomaly values lie in the eastern part of the regional anomaly 
map with a range  of 14.1 mGal to 32.1 mGal. 
ere is a slight difference in regional and residual anomaly 
patterns in the study area. Denser rocks cause the highest 
anomaly value in the southern part of the study area beneath 
the surface. Anomaly horst patterns can also be seen in the 
northern part of regional and residual anomaly maps. ese 
horst patterns geometrically comprise the gravity of the basin 
anomaly. e existence of volcanic in the northern part 
dramatically affects the condition of the existing gravity 
anomaly. Low anomaly values in the middle of the watershed 
correlate with the presence of sedimentary layers with 
densities below the upstream (southern) area. Although the 
northern and southern parts have similar anomalous values, 
they are different, as is the case with rock genes that cause 
differences between the two regions. 
To analyze lineament patterns was carried out using PCI 
Geomatica's LINE Algorithm with the following parameters, 
Figure 3. Filter Radius (pixels) = 10; Edge Gradient reshold 
= 100; Curve Length reshold (Pixels) = 30; Line Fitting 
reshold Error (3); Angular Difference reshold (Degrees) 
= 30; Linking Distance reshold (Pixels) = 20. All 
parameters are the default parameters of the LINE PCI 
Geomatica 2017 module/algorithm. 
e results (Figure 4.) show that the southern part tends to 
have a high enough lineament density compared to the 
northern part of the study area. Fractures might cause this in 
volcanic rocks that have a high enough density; this is at the 
same time concern about tectonic activity in the southern 
part of the Citarum watershed.  
e rose diagram (Figure 5. ) shows the direction of the 
lineament is dominated by the northwest-southeast 

Figure 3. LINE Parameter 

(a) (b) 

Figure 4. (a) Lineament pattern (b) Lineament density of the Study Area 
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lineament direction, and the subdominant directions were in 
N-S. is direction might be in�uenced by regional 
lineament patterns in West Java that tend to be northwest-
southeast direction, where the subduction zone is located 
relatively on the south coast of Java, leading to the north of 
the island of Java (subduction zone). 

 
4. Conclusion  

Based on regional anomaly maps, the range of gravity 
values is about 14.1 to 90.9 mGal. e lowest anomaly value 
is 14.1 mGal and the highest is 90.9 mGal. e residual 
anomaly map, shows that the range of gravity values is about 
17.6 to 10 mGal. 

e lowest anomaly value is -17.6 mGal and the highest is 
10 mGal. The southern part of the study area tends to be 
dominated by high anomaly values ( 43.2 to 90.0 mGal). 
Medium anomaly zones tend to �ll the central part of 
Citarum Watershed, northwestern and northeastern part of 
the regional anomaly map (28 mGal to 35.8 mGal). Low 
anomaly values tend to be lies in the eastern part of the 
regional anomaly map with a range of values of 14.1 mGal to 
32.1 mGal. 

ere is a slight difference in regional and residual 
anomaly patterns at the study area. e highest anomaly 
value in the southern part of the study area is caused by 
denser rocks beneath the surface. e southern part tends to 
have a high enough lineament density when compared to the 
northern part of the study area. is might be caused by the 
presence of fractures in volcanic rocks which have a high 
enough density, this is at the same time concern about 
tectonic activity in the southern part of the Citarum 
watershed. e rose diagram shows the direction of the 
lineament is dominated by the northwest-southeast 
lineament direction and the subdominant directions were in 
N-S. is direction might be in�uenced by regional 
lineament patterns in West Java that tend to be northwest-
southeast direction. 
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