Automated Air Conditioner Controler and Monitoring Based on Internet of Things
Mas Aly Afandi(1*), Silvi Nurandi(2), I Ketut Agung Enriko(3)
(1) Department of Telecommunication Engineering, FTTE ITTP, Purwokerto
(2) Department of Telecommunication Engineering, FTTE ITTP, Purwokerto
(3) Department of Telecommunication Engineering, FTTE ITTP, Purwokerto
(*) Corresponding Author
Abstract
Air conditioner make electricity demand becomes higher over time. International Energy Agency (IEA) shows that electricity consumption for air conditioner will be the main trigger for the increase in world electricity demand in 2050. Higher electricity demand caused by inefficient usage of air conditioner due to human error factors. Human error that mostly happen is forget to turn off the air conditioner. This condition make air conditioner will be operate all day. This research is aim to reduce human error case that happened by making automated air conditioner controller and monitoring based on internet of things. This research use passive infrared sensor as an input to make sure air conditioner in the room is used or not and temperature sensor DHT 11 to make sure air conditioner operation. Internet of things technology is used to monitor the output from the system and control the device. Data test shows that the device works well. Air conditioner controller device works as the command and scenario that given. Error reading for temperature sensor is 0.29% and best configuration for infrared transmitter and passive infrared at radius 90°.
Keywords
Full Text:
PDFReferences
[1] J. Holler, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, and D. Boyle, From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence. British: Elsevier, 2014. Available: https://www.sciencedirect.com/book/9780124076846/ from-machine-to-machine-to-the-internet-of-things
[2] A. H. M. Aman, E. Yadegaridehkordi, Z. S. Attarbashi, R. Hassan, and Y. Park, “A Survey on Trend and Classification of Internet of Things Reviews,” IEEE Access, vol. 8, pp. 111763–111782, 2020. Available: https://ieeexplore.ieee.org/document/9119087
[3] M. Alam, K. A. Shakil, and S. Khan, Internet of Things ( IoT ) Concept and Application. Switzerland: Springer, 2020. Available: https://www.springer.com/gp/book/9783030374 679
[4] R. Buyya and A. V. Dastjerdi, Internet of Things Principles and Paradigms. Todd Green, 2016. Available: https://www.elsevier.com/books/internet-of-things/buyya/978-0-12- 805395-9
[5] I. E. A. (IEA), “The Future of Cooling Opportunities for Energy Efficient Air Conditioning.” International Energy Agency, pp. 1–88, 2018. Available: https://www.iea.org/reports/the-future-of-cooling [Accessed: 15-Feb-2021]
[6] I. Syahrizal, S. Panjaitan, and Yandri, “Analisis Konsumsi Energi Listrik Pada Sistem Pengkondisian Udara Berdasarkan Variasi Kondisi Ruangan ( Studi Kasus Di Politeknik Terpikat Sambas ),” J. Tek. Elektro, vol. 5, no. 1, pp. 14–20, 2013. Available: https://jurnal.untan.ac.id/index.php/Elkha/article/view/3002 [Acessed: 16-Feb-2021]
[7] G. D. Adini, “Analisis potensi pemborosan konsumsi energi listrik pada gedung kelas fakultas teknik universitas indonesia.” Jakarta, pp. 1–110, 2012.
[8] Badan Pusat Statistik, “Statistik Listrik.” Jakarta, pp. 1–78, 2019. Available: https://www.bps.go.id/publication/2020/12/21/156002f4b8b460ef941fa985/statistik- listrik-2014-2019.html [Acessed: 16-Feb-2021]
[9] V. C. B. P., P. R. Angka, A. Gunadhi, D. Lestariningsih, R. Sitepu, and A. F. L. Tobing, “Sistem Pengendalian Aliran Listrik dalam Ruangan melalui Jaringan Intranet dalam Rangka Penghematan Energi,” Widya Tek., vol. 16, no. 1, pp. 49–60, 2017.
[10] M. Natsir, D. B. Rendra, and A. D. Y. Anggara, “Implementasi IoT untuk Sistem Kendali AC Otomatis pada Ruang Kelas di Universitas Serang Raya,” PROSISKO, vol. 6, no. 1, pp. 69–72, 2019. Available: https://e-jurnal.lppmunsera.org/index.php/PROSISKO/ article/view/1128 [Acessed: 17-Feb-2021]
[11] R. R. Hariadi, A. Yuniarti, I. Kuswardayan, D. Herumurti, S. Arifiani, and A. A. Yunanto, “Termo: Smart Air Conditioner Controller Integrated with Temperature and Humidity Sensor,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), 2019, pp. 312–315.
[12] A. M. Ali, S. A. A. Shukor, N. A. Rahim, Z. M. Razlan, Z. A. Z. Jamal, and K. Kohlhof, “IoT-Based Smart Air Conditioning Control for Thermal Comfort,” in 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2019, pp. 289–294.
[13] F. Vinola and A. Rakhman, “Sistem Monitoring dan Controlling Suhu Ruangan Berbasis Internet of Things,” J. Tek. ELektro dan Komput., vol. 9, no. 2, pp. 117–126, 2020.
[14] S. F. Salleh, M. E. M. Roslan, A. M. Isa, and T. A. R. T. Abdullah, “Electricity and Cost Savings from Utilization of Highly Energy Efficient Air Conditioners in Malaysia,” in 2018 IEEE Student Conference on Research and Development (SCOReD), 2018, pp. 1–4.
[15] A. Al-Ghasem and N. Ussaleh, “Air conditioner control using neural network and PID controller,” in 2012 8th International Symposium on Mechatronics and its Applications, 2012, pp. 1–5.
[16] S. Thongkaew and C. Charitkuan, “IoT for Energy Saving of Split-Type Air Conditioner by Controlling Supply Air and Area Temperature,” in 2018 22nd International Computer Science and Engineering Conference (ICSEC), 2018, pp. 1–4.
[17] R. R. Hariadi, A. Yuniarti, I. Kuswardayan, D. Herumurti, S. Arifiani, and A. A. Yunanto, “Termo: Smart Air Conditioner Controller Integrated with Temperature and Humidity Sensor,” in 2019 12th International Conference on Information & Communication Technology and System (ICTS), 2019, pp. 312–315.
[18] E. Systems and I. O. T. Team, “ESP8266EX Datasheet.” Espressif, pp. 1–30, 2015.
[19] AOSONG, “Temperature and Humidity Module Product Manual.” pp. 1–8.
[20] C. 11, “HC-SR501 PIR Motion Detector.” pp. 1–3.
[21] Joy-it, “KY-005 Infrared Transmitter module.” pp. 25–33, 2017.
[22] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Second. California: California Technical Publishing, 1999.
[23] R. G. Lyons, Understanding Digital SIgnal Processing, Third. Boston: Prentice Hall, 2010.
[24] G. G. Redhyka, D. Setiawan, and D. Soetraprawata, “Embedded sensor fusion and moving-average filter for Inertial Measurement Unit (IMU) on the microcontroller-based stabilized platform,” in 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), 2015, pp. 72–77.
[25] A. A. Safaei Pirooz, R. G. J. Flay, L. Minola, C. Azorin-Molina, and D. Chen, “Effects of sensor response and moving average filter duration on maximum wind gust measurements,” J. Wind Eng. Ind. Aerodyn., vol. 206, p. 104354, 2020.
[26] O. F. Yalcin and M. Dicleli, “Effect of the high frequency components of near-fault ground motions on the response of linear and nonlinear SDOF systems: A moving average filtering approach,” Soil Dyn. Earthq. Eng., vol. 129, p. 105922, 2020.
[27] J. Alvarez-Ramirez, E. Rodriguez, and J. Carlos Echeverría, “Detrending fluctuation analysis based on moving average filtering,” Phys. A Stat. Mech. its Appl., vol. 354, pp. 199–219, 2005.
DOI: https://doi.org/10.22146/ijeis.64563
Article Metrics
Abstract views : 7019 | views : 4208Refbacks
- There are currently no refbacks.
Copyright (c) 2021 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1