Klasifikasi Golongan Darah Menggunakan Artificial Neural Networks Berdasarkan Histogram Citra

https://doi.org/10.22146/ijeis.64049

Lailis Syafaah(1), Yudawan Hidayat(2), Novendra Setyawan(3*)

(1) Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang
(2) Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang
(3) Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang
(*) Corresponding Author

Abstract


 Blood type in the medical world can be divided into 4 groups, namely A, B, AB and O. To be able to find out the blood type, a blood type test must be done. So far, human blood type detection is still done manually to observe the agglutination process. This research applies a blood type identification process using image processing. This system works by reading the blood type card image that has been filled with blood samples, then it will be processed through a histogram process to get the minimum and maximum RGB values and pixel locations which are then classified by Artificial Neural Networks (ANN) to determine the blood type from the training results and data matching. From the test results using 12 samples, it was found that the average error in blood type identification was 16.67%.


Keywords


Blood Classification; RGB; Image Histogram; Artificial Neural Network

Full Text:

PDF


References

A. Oktari and N. D. Silvia, “Pemeriksaan Golongan Darah Sistem ABO Metode Slide dengan Reagen Serum Golongan Darah A, B, O,” J. Teknol. Lab., vol. 5, no. 2, pp. 49–54, 2016.

A. Pudji, “PENENTUAN GOLONGAN DARAH DENGAN PENGOLAHAN CITRA,” J. TEKNOKES, vol. 8, no. 1, 2013.

A. B. W. Putra, D. S. B. Utomo, and M. D. Rahmawan, “Verifikasi Golongan Darah Manusia Berbasis Citra Dijital Menggunakan Logika Fuzzy,” JST (Jurnal Sains Ter., vol. 4, no. 1, pp. 23–32, 2018.

F. R. Hariri, “Klasifikasi Jenis Golongan Darah Menggunakan Fuzzy C-Means Clustering (FCM) dan Learning Vector Quantization (LVQ),” MATICS, vol. 10, no. 1, pp. 26–29, 2018.

S. Kusmaryanto, “Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram,” J. EECCIS, vol. 8, no. 2, pp. 193–198, 2014.

N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object Detection of Omnidirectional Vision Using PSO-Neural Network for Soccer Robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121.

M. Lestandy, L. Syafaah, and A. Faruq, “Klasifikasi pendonor darah potensial menggunakan pendekatan algoritme pembelajaran mesin,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 217–221, 2020.

N. Setyawan, M. Nasar, and N. Mardiyah, “Jaya-Neural Network for Server Room Temperature Forecasting Through Sensor Network,” in 2019 International Electronics Symposium (IES), 2019, pp. 428–431.

A. Faruq, S. S. Abdullah, A. Marto, C. M. C. Razali, and S. F. M. Hussein, “Flood Forecasting using Committee Machine with Intelligent Systems: a Framework for Advanced Machine Learning Approach,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 479, no. 1, p. 12039.

L. V Fausett, Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India, 2006.



DOI: https://doi.org/10.22146/ijeis.64049

Article Metrics

Abstract views : 3743 | views : 3700

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJEIS (Indonesian Journal of Electronics and Instrumentations Systems)
ISSN 2088-3714 (print); ISSN 2460-7681 (online)
is a scientific journal the results of Electronics
and Instrumentations Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijeis.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijeis



View My Stats1
View My Stats2