Measurement and Analysis of Detecting Fish Freshness Levels Using Deep Learning Method
Dhea Fajriati Anas(1*), Indra Jaya(2), Yeni Herdiyeni(3)
(1) IPB University
(2) IPB University
(3) IPB University
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] A. Bochkovskiy, C.Y. Wang, and H.Y.M. Liao, “YOLOv4: Optimal speed and accuracy of object detection,” arXiv, vol. 2004, pp. 1-17, 2020.
[2] A. Daskalova, “A farmed fish welfare: stress, post-mortem muscle metabolism, and stress-related meat quality changes,” International Aquatic Research, vol. 11, pp. 113-124, 2019.
[3] A.R. Prananda, E.L. Frannita, E. Pramitaningrum, A. Hidayat, W.B. Setiawan, N. Purwaningsih, “Klasifikasi jenis cacat kulit menggunakan SMOTE-GoogLeNet,” Journal Informatic Technology and Communication vol. 8, no. 1, pp. 23-32, 2024
[4] A. Santoso, and G. Ariyanto, “Implementasi deep learning berbasis keras untuk pengenalan wajah,” Jurnal Emitor, vol. 18, no. 1, pp. 15-21, 2018.
[5] B. Anwar, “Penerapan algoritma jaringan syaraf tiruan backpropagation dalam memprediksi tingkat suku bunga bank,” Jurnal SAINTIKOM, vol. 10, no. 2, pp. 111-123, 2011.
[6] Badan Standarisasi Nasional (BSN). Ikan Segar SNI 01-2729-2013¸Jakarta, ID: Badan Standarisasi Nasional (BSN), 2013.
[7] D. Kumar, S. Kumar, and Rajput, “An intelligent system for fish freshness quality assessment using artificial neural network,” IJCRT (International Journal of Creative Research Thoughts), vol. 8, no. 2, pp. 765-958, 2020.
[8] G. Jocher. “YOLOv5”. Ultralytics. https://docs.ultralytics.com/. (accesed on May 10, 2020].
[9] H.M. Lalabadi, M. Sadeghi, and S.A. Mireei, “Fish freshness categorization from eyes and gills color features using multiclass artificial neural network and support vector machines,” Aquacultural Engineering, vol. 90, no. 2020, pp. 1-9, 2020.
[10] J. Han, and M. Kamber, Data Mining: Concepts and Techniques Tutorial, San Fransisco, USA: Morgan Kaufman Publisher, 2001.
[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: unified, real-time object detection,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[12] J. Solawetz. “Yolov5 new version-improvement and evaluation”. Roboflow. https://blog.roboflow.com/yolov5-improvements-and-evaluation/. (accesed on Jan. 10, 2023)
[13] I.C. Navotas, C.N.V. Santos, E.J.M. Balderrama, F.E.B. Candido, A.J.E. Villacanas, and J.S. Velasco, “Fish identification and freshness classification through image processing using artificial neural network,” (ARPN) Asian Research Publishing Network Journal of Engineering and Applied Sciences, vol. 13, no. 18, pp. 4912-4922, 2018.
[14] L.K.S. Tolentino, J.W.F. Orillo, P.D. Aguacito, E.J.M. Colango, J.R.H. Malit, J.T.G. Marcelino, A.C. Nadora, and A.J.D. Odeza, “Fish freshness determination through support vector machine,” Journal of Telecommunication, Electronic, and Computer Engineering, vol. 9, no. 2-5, pp. 139-143, 2017.
[15] M.F. Fibrianda, and A. Bhawiyuga, “Analisis perbandingan akurasi deteksi serangan pada jaringan komputer dengan metode naïve bayes dan support vector machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3112-3123, 2018.
[16] M.H. Sazli, “A brief review of feed forward neural networks,” Commun. Fac. Sci. Univ. Ank. Series A2-A3, vol. 50, no. 1, pp. 11-17, 2006.
[17] M. Nurilmala, Nurjanah, A. Fatriani, A.R. Indarwati, R.M. Pertiwi “Kemunduran mutu ikan baronang (Siganus javus) pada penyimpanan suhu chilling,” Jurnal Teknologi Perikanan dan Kelautan, vol. 12, no. 1, pp. 92-101, 2021.
[18] M. Sornam, A. Radhika, and M. Manisha, “Fish freshness classification using wavelet transformation and fuzzy logic technology,” Asian Journal of Computer Science and Information Technology, vol. 7, no. 2, pp. 15-21, 2017.
[19] N.M.S. Iswari, Wella, and Ranny, Fish freshness classification method based on fish image using K-Nearest Neighbor. 4th International Conference on New Media Studies, 2017.
[20] N. Sengar, M.K. Dutta, B. Sarkar, “Computer vision based technique for identification of fish quality after pesticide exposure,” International Joural of Food Properties, vol. 20, no.s2, pp. 192-205, 2017.
[21] R. Vargas and L. Ruiz, “Deep learning: previous and present applications,” Journal of Awareness, vol. 2, no. 3, pp. 11-20, 2018.
[22] S. Cui, Y. Zhou, Y. Wang, and L. Zhai, “Fish detection using deep learning”. Hindawi, vol. 2020, pp. 1-13, 2020.
[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster-RCNN: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017.
[24] S. Srivastava, A.V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative analysis of deep learning image detection algorithms”. Journal of Big Data, vol. 8, no. 1, pp. 1-27, 2021.
T. Murakoshi, T. Masuda, K. Utsumi, K. Tsubota, Y. Wada, “Glossiness and perishable food quality: visual freshness judgment of fish eyes based on luminance distribution,” Plos One, vol. 8, no.3, pp. 1-5, 2013.
[25] T. Nurhayati, Nurjanah, and R. Nugraha, Fisiologi, Formasi, dan Degradasi Metabolit Hasil Perairan, Bogor, ID: IPB Press, 2019.
[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, 2015.
DOI: https://doi.org/10.22146/ijccs.95054
Article Metrics
Abstract views : 430 | views : 246Refbacks
- There are currently no refbacks.
Copyright (c) 2024 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1