Smart Product Recommendations in Web E-Commerce: Leveraging Apriori Algorithm for Market Basket Analysis
Hendra Hendra(1), Aditiya Hermawan(2*), Edy Edy(3)
(1) Bachelor Program of Informatics Engineering, Buddhi Dharma University, Banten
(2) Deparment of Informatics Engineering, Buddhi Dharma University, Banten
(3) Department of Software Engineering, Buddhi Dharma University, Banten
(*) Corresponding Author
Abstract
The world of online commerce is becoming increasingly competitive, and to succeed in this field, it is not enough to showcase products to potential buyers. It is crucial to offer various products and keep product recommendations up-to-date, especially for customers who buy multiple items. To address this challenge, an intelligent system is needed that can automatically generate trending product recommendations based on sales data. In this research, the Market Basket Analysis (MBA) method analyzes consumer transaction data and identifies products often purchased together. The apriori algorithm is applied to generate association rules, and the Lift Ratio parameter is used to evaluate the strength of these rules. This research is implemented on an e-commerce website, and the generated association rules will be applied to provide automatic product recommendations based on recent sales trends. The results show that the automatic product recommendation system developed for the e-commerce website significantly helps users enhance their online shopping experience. Using the Lift Ratio parameter in validating association rules provides strong evidence of the relevance and accuracy of the generated product recommendations, which can increase customer satisfaction and sales potential.
Keywords
Full Text:
PDFReferences
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy (Market Basket Analysis with Apriori Algorithms in Ecommerce Trendy Muslim Clothing Stores),” JUITA : Jurnal Informatika, vol. 8, no. 1, pp. 11–18, May 2020. C. S. Fatoni, E. Utami, and F. W. Wibowo, “Online Store Product Recommendation System Use Apriori Method,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Dec. 2018. doi: 10.1088/1742-6596/1140/1/012034. BANK INDONESIA, “BANGKIT DAN OPTIMIS : SINERGI DAN INOVASI UNTUK PEMULIHAN EKONOMI,” BANK INDONESIA, JAKARTA, pp. 1–61, Nov. 24, 2021. M. Sholik and A. Salam, “Implementasi Algoritma Apriori untuk Mencari Asosiasi Barang yang Dijual di E-commerce OrderMas Implementation of Apriori Algorithm to Find Items Association That Sold at OrderMas E-commerce,” Jurnal Teknologi Informasi , vol. 17, no. 2, pp. 158–170, May 2018, doi: https://doi.org/10.33633/tc.v17i2.1656. D. I. Setiani, F. Nasafi, T. Mauritsius, E. R. Kaburuan, and R. Jayadi, “Data mining implementation with association method and apriori algorithm for store display design in home center indonesia,” ICIC Express Letters, vol. 15, no. 11, pp. 1221–1226, Nov. 2021, doi: 10.24507/icicel.15.11.1221. A. Maske and B. Joglekar, “Survey on Frequent Item-Set Mining Approaches in Market Basket Analysis,” in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), India: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 2018. E. Ozgormus and A. E. Smith, “A data-driven approach to grocery store block layout,” Comput Ind Eng, vol. 139, Jan. 2020, doi: 10.1016/j.cie.2018.12.009. M. Marsono, “Penerapan Data Mining Pengaturan Pola Tata Letak Barang Pada Berkah Swalayan Untuk Strategi Penjualan Menggunakan Algoritma Apriori,” InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), vol. 3, no. 2, pp. 170–175, Feb. 2019, doi: 10.30743/infotekjar.v3i2.908. T. Joe, R. Sreejith, and K. Sekar, “Optimization of store layout using market basket analysis,” International Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 6459–6463, Jul. 2019, doi: 10.35940/ijrte.B2207.078219. R. Purwaningsih, L. Tri Utami, Y. Widharto, and N. Susanto, “REDESAIN TATA LETAK PRODUK DI SUPERMARKET BERDASARKAN PERILAKU PEMBELIAN DENGAN METODE MARKET BASKET ANALYSIS,” Jurnal Teknik Industri, vol. 15, no. 3, 2020. D. I. Setiani, F. Nasafi, T. Mauritsius, E. R. Kaburuan, and R. Jayadi, “Data mining implementation with association method and apriori algorithm for store display design in home center indonesia,” ICIC Express Letters, vol. 15, no. 11, pp. 1221–1226, Nov. 2021, doi: 10.24507/icicel.15.11.1221. S. Halim, T. Octavia, and C. Alianto, “Designing facility layout of an amusement arcade using market basket analysis,” Procedia Comput Sci, vol. 161, pp. 623–629, 2019, doi: 10.1016/j.procs.2019.11.165. M. Loukili, F. Messaoudi, and M. El Ghazi, “Machine learning based recommender system for e-commerce,” IAES International Journal of Artificial Intelligence, vol. 12, no. 4, pp. 1803–1811, Dec. 2023, doi: 10.11591/ijai.v12.i4.pp1803-1811. S. Jabbour, F. E. El Mazouri, and L. Sais, “Mining Negatives Association Rules Using Constraints,” Procedia Comput Sci, vol. 127, pp. 481–488, Jan. 2018, doi: 10.1016/J.PROCS.2018.01.146. C. Chapman and E. M. Feit, “Association Rules for Market Basket Analysis,” in R For Marketing Research and Analytics, C. Chapman and E. M. Feit, Eds., Cham: Springer International Publishing, 2019, pp. 341–362. doi: 10.1007/978-3-030-14316-9_12. S. Huber, H. Wiemer, D. Schneider, and S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications – a holistic extension to the CRISP-DM model,” Procedia CIRP, vol. 79, pp. 403–408, 2019, doi: https://doi.org/10.1016/j.procir.2019.02.106. Y. Apridonal M, W. Choiriah, and A. Akmal, “PENERAPAN DATA MINING MENGGUNAKAN METODE ASSICIATION RULE DENGAN ALGORITMA APRIORI UNTUK ANALISA POLA PENJUALAN BARANG,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 5, no. 2, pp. 193–198, Jul. 2019, doi: 10.33330/jurteksi.v5i2.362. H. K. Lin, C. H. Hsieh, N. C. Wei, and Y. C. Peng, “Association rules mining in R for product performance management in industry 4.0,” Procedia CIRP, vol. 83, pp. 699–704, 2019, doi: 10.1016/j.procir.2019.04.099. Y. A. Ünvan, “Market basket analysis with association rules,” Commun Stat Theory Methods, vol. 50, no. 7, pp. 1615–1628, 2021, doi: 10.1080/03610926.2020.1716255.
DOI: https://doi.org/10.22146/ijccs.89075
Article Metrics
Abstract views : 678 | views : 733Refbacks
- There are currently no refbacks.
Copyright (c) 2024 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1