Sentiment Analysis Mobile JKN Reviews Using SMOTE Based LSTM

https://doi.org/10.22146/ijccs.101910

Ghufron Tamami(1*), Wiwit Agus Triyanto(2), Syafiul Muzid(3)

(1) Muria Kudus University
(2) Muria Kudus University
(3) Muria Kudus University
(*) Corresponding Author

Abstract


The JKN Mobile application plays an important role in providing easy and fast access to health services for JKN-KIS users. However, user reviews indicate dissatisfaction with several aspects of the application, such as login issues and OTP codes, which can affect the overall user experience. Another challenge faced is class imbalance in the review dataset, which can affect the performance of sentiment analysis. This study uses Long Short-Term Memory (LSTM) combined with Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance. Review data was collected from Google Play Store and Kaggle, then preprocessed including lemmatization, tokenization, and padding. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The results showed that LSTM with SMOTE achieved 88% accuracy, 90% precision, 88% recall, and 89% F1-score. SMOTE successfully improved performance in the minority class although there was a slight decrease in accuracy compared to the model without SMOTE. Word cloud visualization reveals positive sentiments regarding the ease of use of the application, while negative sentiments indicate areas that need improvement. This study emphasizes the importance of handling imbalanced datasets to produce more accurate sentiment analysis.

Keywords


Sentiment Analysis; Imbalanced Data; LSTM; Mobile JKN; SMOTE

Full Text:

PDF


References

[1] L. N. Hapsari and N. Rokhman, “Anomaly Detection of Hospital Claim Using Support Vector Regression,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 18, no. 1, p. 1, 2024, doi: 10.22146/ijccs.91857.

[2] A. Ramadhan and H. R. Sari, “BPJS kesehatan luncurkan aplikasi ‘Mobile JKN,’” ANTARA. [Online]. Available: https://www.antaranews.com/berita/665018/bpjs-kesehatan-luncurkan-aplikasi-mobile-jkn

[3] W. M. E. Lumi, R. A. Musak, F. F. Tumiwa, M. Y. Waworuntu, and W. S. Surya*, “Edukasi Tentang Penggunaan Aplikasi Mobile JKN Pada Pasien Rawat Jalan RSUD Anugerah Tomohon,” J. Pengabdi. Kpd. Masy. Nusant., vol. 4, no. 3, pp. 1620–1626, 2023.

[4] S. F. Maulani et al., “Analisis Costumer Service Post Transaction Melalui Google Ulasan Pada PT Indah Logistik Cargo cabang Serang : Product Tracking,” vol. 4, pp. 5395–5404, 2024.

[5] J. Menengah, “Peraturan Presiden (Perpres) Nomor 49 Tahun 2024 tentang Strategi Nasional Perlindungan Konsumen,” Bpk Ri, no. 198461, 2024.

[6] N. L. Ratniasih and N. W. Ninik Jayanti, “Sentiment Analysis of Stakeholder Satisfaction Measurement,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 217, 2022, doi: 10.22146/ijccs.72245.

[7] H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, 2022, doi: 10.13057/ijas.v5i1.56825.

[8] R. Md, R. D. Restiyan, and H. Irsyad, “Analisis Sentimen Masyarakat terhadap Perilaku Lawan Arah yang diunggah pada Media Sosial Youtube Menggunakan Naïve Bayes,” BANDWIDTH J. Informatics Comput. Eng., vol. 02, no. 02, pp. 75–83, 2024.

[9] I. K. A. G. Wiguna, P. Sugiartawan, I. G. I. Sudipa, and I. P. Y. Pratama, “Sentiment Analysis Using Backpropagation Method to Recognize the Public Opinion,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 4, p. 423, 2022, doi: 10.22146/ijccs.78664.

[10] M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

[11] E. Tasci, Y. Zhuge, K. Camphausen, and A. V. Krauze, “Bias and Class Imbalance in Oncologic Data—Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets,” Cancers (Basel)., vol. 14, no. 12, 2022, doi: 10.3390/cancers14122897.

[12] E. F. Saputra and M. R. Pribadi, “Analisis Sentimen Komentar Pada Kanal Youtube The Lazy Monday Menggunakan Algoritma Naive Bayes,” MDP Student Conf., vol. 2, no. 1, pp. 17–23, 2023, doi: 10.35957/mdp-sc.v2i1.4283.

[13] N. S. Sediatmoko, Y. Nataliani, and I. Suryady, “Sentiment Analysis of Customer Review Using Classification Algorithms and SMOTE for Handling Imbalanced Class,” Indones. J. Inf. Syst., vol. 7, no. 1, pp. 38–52, 2024, doi: 10.24002/ijis.v7i1.8879.

[14] Eskiyaturrofikoh and R. R. Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” JIPI(Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1408–1419, 2024, [Online]. Available: https://www.jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/5392

[15] N. Istiqamah and M. Rijal, “Klasifikasi Ulasan Konsumen Menggunakan Random Forest dan SMOTE,” J. Syst. Comput. Eng., vol. 5, no. 1, pp. 66–77, 2024, doi: 10.61628/jsce.v5i1.1061.

[16] C. Candra, K. W. Chandra, and H. Irsyad, “Efektifitas SMOTE dalam Mengatasi Imbalanced Class Algoritma K-Nearest Neighbors pada Analisis Sentimen terhadap Starlink,” J. Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 31–42, 2024, doi: 10.54082/jiki.132.

[17] G. Tamami and M. Arifin, “Penggunaan LSTM dalam Membangun Prediksi Penjualan untuk Aplikasi Laptop Lens,” vol. 14, no. 2, pp. 301–308, 2024.

[18] M. Fadli and R. A. Saputra, “Klasifikasi Dan Evaluasi Performa Model Random Forest Untuk Prediksi Stroke,” JT J. Tek., vol. 12, no. 02, pp. 72–80, 2023, [Online]. Available: http://jurnal.umt.ac.id/index.php/jt/index



DOI: https://doi.org/10.22146/ijccs.101910

Article Metrics

Abstract views : 5 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2