In Silico Investigation of γ-Sitosterol Isolated from the Ethanol Extract of Artocarpus camansi Leaves as a Sunscreen Agent
Rosnani Nasution(1*), Rafna Azura(2), Muhammad Bahi(3), Nur Balqis Maulydia(4), Reza Akbar Bastian(5), Michelia Mutiara Hilda(6), Marianne Marianne(7)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Jl. Teuku Nyak Arief No. 441, Banda Aceh 23111, Indonesia
(7) Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Jl. Dr. T. Mansyur No. 9, Medan 20155, Indonesia
(*) Corresponding Author
Abstract
The activity test of sunscreen lotion from the ethanolic extract of Artocarpus camansi leaves was carried out. The activity of sunscreen lotion as sun protecting factor (SPF) is ranging from 28.716 ± 0.1557 to 29.740 ± 0.1360, while the SPF of pure compound is 28.483 ± 0.1422. The type of lotion is water in oil (w/o) with viscosity and pH values in the range of 3057.1–5001.1 cP and 6.86–7.89, respectively. The viscosity and pH values obtained were following the standard SNI 16-4399-1996. The value of dispersion is in the range of 4.60–6.90 cm, while the value of adhesion is in the range of 14.55–25.03 s. The pure compound is thought to be γ-sitosterol by analysis of its molecular weight similarity and positive ion fragment m/z with a melting point of 147 °C. From the molecular docking, it is known that γ-sitosterol has the highest binding affinity value of −7.4 and −8.2 kcal/mol to human neutrophile collagenase (PDB ID: 1BZS) and fibroblast collagenase-1 (PDB ID: 966C), respectively. The presence of active compounds in the ethanolic extract of A. camansi lotion can support the activity of the SPF so that it can be used as a sunscreen formula.
Keywords
Full Text:
Full Text PDFReferences
[1] Zhang, S., Miller, D.D., and Li, W., 2021, Non-musculoskeletal benefits of vitamin D beyond the musculoskeletal system, Int. J. Mol Sci., 22 (4), 2128.
[2] Khiabani, P.S., Kashi, M.B., Zhang, X., Pardehkhorram, R., Markhali, B.P., Soeriyadi, A.H., Micolich, A.P., and Gooding, J.J., 2018, A graphene-based sensor for real time monitoring of sun exposure, Carbon, 138, 215–218.
[3] Donglikar, M.M., and Deore, S.L., 2016, Sunscreens: A review, Pharmacogn. J., 8 (3), 171–179.
[4] He, H., Li, A., Li, S., Tang, J., Li, L., and Xiong, L., 2020, Natural components in sunscreens: Topical formulations with sun protection factor (SPF), Biomed. Pharmacother., 134, 111161.
[5] Nasution, R., Marianne, M., and Nur, H., 2015, β-Amyrin acetate of ethyl acetate extract of the bark plant Artocarpus camansi and its antidiabetic activity, Pharma Chem., 7 (6), 71–78.
[6] Nasution, R., Bahi, M., Saidi, N., and Junina, I., 2015, β-Sitosterol from Bark of Artocarpus camansi and its Antidiabetic Activity, Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, 5 (1), 118–124.
[7] Nasution, R., Nur Fitrah, C., Helwati H, Murniana, M., Arifin, B., Cutchamzurni, C., Rizal, Y., and Marianne, M., 2018, Antidiabetes activities extract hexane from the peels of Artocarpus camansi Blanco fruit, Asian J. Pharm. Clin. Res., 11 (13), 12–17.
[8] Buddhisuharto, A.K., Pramastya, H., Insanu, M., and Fidrianny, I., 2021, An updated review of phytochemical compounds and pharmacology activities of Artocarpus genus, Biointerface Res. Appl. Chem., 11 (6), 14898–14905.
[9] Nasution, R., Muhabbah, N., Helwati, H., Bahi, M., Marianne, M., and Amna, U., 2020, Isolation of lupeol acetate from fruit peels of Artocarpus camansi, J. Adv. Pharm. Technol. Res., 11 (3), 148–156.
[10] Vianney, Y.M., Amanda, N., Pieknell, K., Johan, C.W., and Hardjo, P.H., 2018, Evaluation of the antioxidant and antibacterial activity of breadnut (Artocarpus camansi Blanco) leaf extracts, Indian J. Nat. Prod. Resour., 9 (2), 151–159.
[11] Romanhole, R.C., Fava, A.L.M., Tundisi, L.L., de Macedo, L.M., dos Santos, É.M., Ataide, J.A., and Mazzola, P.G., 2020, Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods, Int. J. Pharm., 591, 120013.
[12] Velavan, S., 2015, Phytochemical techniques - A review, World J. Sci. Res., 1 (2), 80–91.
[13] Chauhan, L., and Gupta, S., 2020, Creams: A review on classification, preparation methods, evaluation and its applications, J. Drug Delivery Ther., 10 (5-s), 281–289.
[14] Kusumawati, A.H., Munawaroh, A., and Fikayuniar, L., 2021, Formulation and physical evaluation of body lotion preparation of Kacip Fatimah (Labisia pumila) ethanolic extracts as antioxcidant, IOP Conf. Ser.: Mater. Sci. Eng., 1071 (1), 012010.
[15] Geoffrey, K., Mwangi, A.N., and Maru, S.M., 2019, Sunscreen products: Rationale for use, formulation development and regulatory considerations, Saudi Pharm. J., 27 (7), 1009–1018.
[16] Nasution, R., Mailidar, D., Bahi, M., Saidi, N., Marianne, M., and Iqhrammullah, M., 2022, Isolation of the active compound from the bark of Cinnamomum burmannii as a sunscreen, Rasayan J. Chem., 15 (1), 557–563.
[17] Mansur, J.D.S., Breder, M.N., Mansur, M.C.A., and Azulay, R.D., 1986, Determinação do fator de proteção solar por espectrofotometria, An. Bras. Dermatol., 61 (3), 121–124.
[18] Sayre, R.M., Agin, P.P., LeVee, G.J., and Marlowe, E., 1979, A comparison of in vivo and in vitro testing of sunscreening formulas, Photochem. Photobiol., 29 (3), 559–566.
[19] Anusha, R., Prathibha, P., Goud, G.G., Khatun, R., and Ahmed, A.A., 2024, Preparation and evaluation methods of herbal body lotion-A review, World J. Pharm. Sci. Res., 3 (2), 116–131.
[20] Bakhrushina, E.O., Anurova, M.N., Zavalniy, M.S., Demina, N.B., Bardakov, A.I., and Krasnyuk, I.I., 2022, Dermatologic gels spreadability measuring methods comparative study, Int. J. Appl. Pharm., 14 (1), 164–168.
[21] Tadros, T.F., 2013, “Emulsion Formation, Stability, and Rheology” in Emulsion Formation and Stability, Wiley‐VCH, Weinheim, Germany, 1–75.
[22] Kurnianingrum, D.N., and Zulkarnain A.K., 2023, Optimization and physical stability of kembang bulan (Tithonia diversifolia [A.Gray] extract cream formula, JFSP, 9 (2), 140–147.
[23] Maulydia, N.B., Tallei, T.E., Ginting, B., Idroes, R., Illian, D.N., and Faradilla, M., 2022, Analysis of flavonoid compounds of orange (Citrus sp.) peel as anti-main protease of SARS-CoV-2: A molecular docking study, IOP Conf. Ser.: Earth Environ. Sci., 951 (1), 012078.
[24] Daina, A., Michielin, O., and Zoete, V., 2017, Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.
[25] Abdul Jaleel A.H., Mahdi, J.F., Farooqui, M., and Shaikh, Y.H., 2019, Gas Chromatography-mass spectroscopic analysis of black plum seed (Syzygium cumini) extract in hexane, Asian J. Pharm. Clin. Res., 12 (2), 219–222.
[26] Kafelau, M., Kopon, A.M., Baunsele, A.B., Tukan, M.B., Leba, M.U., Komisia, F., Boelan, E.G., 2022, Phytochemical screening and TLC profiling of combination extracts of avocado (Persea americana Mill.) and papaya (Carica papaya) leaves from Timor Island, Indones. J. Chem. Res., 10 (1), 32–37.
[27] Doloking, H., Mukhriani, M., Ningsi, S., and Tahar, N., 2022, Flavonoids: A review on extraction, identification, quantification, and antioxidant
activity, Ad Dawaa’ J. Pharm. Sci., 5 (1), 1–26.
[28] Maharini, I., 2019, In vitro determination of sunprotective factor (SPF) of dadap serep (Erythrina subumbrans (Haks.) Merr.) leaf extract using spectrophotometric method, J. Chem. Nat. Resour., 1 (1), 64–67.
[29] BSN, 1996, Sediaan Tabir Surya, National Standardization Agency, Jakarta, SNI 16-4399-1996
[30] Skotnicki, S., 2020, “Skin pH, Epidermal Barrier Function, Cleansers, and Skin Health” in Local Wound Care for Dermatologists, Eds. Alavi, A., and Maibach, H.I., Springer International Publishing, Cham, Switzerland, 5–12.
[31] Sari, N., and Inayah, N, 2023, Utilization of secang wood ethanol extract (Caesalpinia sappan L.) as an additional ingredient antiseptic hand cream preparations instead of hand sanitizer, Indo. J. Chem. Res., 10 (3), 164–170.
[32] Kurniawan, R., Suhartati, T., Yandri, A.S., Meriyanti, D., and Sukrasno, S., 2021, Potential antibacterial activity of bioactive β-sitosterol from root bark of Rhizophora apiculata from Lampung coastal, J. Kim. Sains Apl., 24 (4), 114–119.
[33] Tripathi, N., Kumar, S., Singh, R., Singh, C.J., Singh, P., and Varshney, V.K., 2013, Isolation and identification of γ-sitosterol by GC-MS from the leaves of (Decne), Open Bioact. Compd. J., 4 (1), 25–27.
[34] Tahya, C.Y., Tiwery, E., and Monaten, M.G., Lumbantoruan, T.K.J., 2020, Identifikasi fitosterol dengan kromatografi gas–spektrometer massa pada ekstrak kloroform biji buah atung (Parinarium glaberimum Hassk) asal Kabupaten Seram Bagian Barat, Maluku, J. Cis-Trans, 4 (1), 14–20.
[35] Macoska, J.A., 2023, The use of beta-sitosterol for the treatment of prostate cancer and benign prostatic hyperplasia, Am. J. Clin. Exp. Urol., 11 (6), 467–480.
DOI: https://doi.org/10.22146/ijc.99792
Article Metrics
Abstract views : 54 | views : 337Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.