Enriching 1,8-Cineole Content in Eucalyptus camaldulensis D. Raw Essential Oil: An Investigation on Optimizing Vacuum Fractional Distillation Process

https://doi.org/10.22146/ijc.99211

Tien Xuan Le(1*), Minh Nhat Nguyen(2), Trung Minh Le(3), Minh Chau Vu Pham(4)

(1) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
(2) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
(3) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
(4) Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
(*) Corresponding Author

Abstract


This study addressed the gap in optimizing the 1,8-cineole content in Eucalyptus camaldulensis essential oil, an area with a limited focus in existing literature. While previous research has explored distillation methods for essential oils, this study is the first to systematically investigate the effects of key operational parameters on cineole enhancement using batch vacuum fractional distillation. The optimization process was carried out using a single–factor method focusing on operating pressures (60, 80, 100, 120, 140, and 160 mmHg), column types (Vigreux and Hempel), packing materials (wire mesh, large strings, small strings), and column heights (300, 400, 500, and 600 mm). After each distillation experiment, the essential oil samples were analyzed using GC-MS to quantify the concentration of 1,8-cineole and other components. The best result, achieved at 60 mmHg with a 500 mm Hempel column packed with small metal helixes (2 × 10 mm), increased 1,8-cineole content from 47.9% to 74.6%, with 97% recovery and over 60% yield. These findings highlight the impact of distillation parameters on cineole concentration, marking a 1.5-fold improvement. This optimized distillation process offers an efficient alternative for producing high-bioactivity cineole oil, with potential pharmaceutical and personal care applications, reducing reliance on complex synthesis.

Keywords


1,8-cineole; fractional distillation; Eucalyptus camaldulensis; essential oil; enriching

Full Text:

Full Text PDF


References

[1] Dogan, G., Kara, N., Bagci, E., and Gur, S., 2017, Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis, Z. Naturforsch., C, 72 (11-12), 483–489.

[2] Bhowal, B., and Gopal, M., 2015, Eucalyptol: Safety and pharmacological profile, RGUHS J. Pharm. Sci., 5 (4), 125–131.

[3] Chandorkar, N., Tambe, S., Amin, P., and Madankar, C., 2021, A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus, Phytomed. Plus, 1 (4), 100089.

[4] Aleksic Sabo, V., and Knezevic, P., 2019, Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review, Ind. Crops Prod., 132, 413–429.

[5] Hoch, C.C., Petry, J., Griesbaum, L., Weiser, T., Werner, K., Ploch, M., Verschoor, A., Multhoff, G., Bashiri Dezfouli, A., and Wollenberg, B., 2023, 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases, Biomed. Pharmacother., 167, 115467.

[6] Reshna, K.R., Gopi, S., and Balakrishnan, P., 2022, Introduction to flavor and fragrance in food processing, ACS Symp. Ser., 1433, 1–19.

[7] Gurav, T.P., Dholakia, B.B., and Giri, A.P., 2022, A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil, Phytochem. Rev., 21 (3), 879–913.

[8] Sefidkon, F., Asareh, M.H., Abravesh, Z., and Kandi, M.N.H., 2010, Seasonal variation in the essential oil and 1,8-cineole content of four Eucalyptus species (E. intertexta, E. platypus, E. leucoxylon and E. camaldulensis), J. Essent. Oil Bear. Plants, 13 (5), 528–539.

[9] Surbhi, S., Kumar, A., Singh, S., Kumari, P., and Rasane, P., 2023, Eucalyptus: Phytochemical composition, extraction methods and food and medicinal applications, Adv. Tradit. Med., 23 (2), 369–380.

[10] Elaissi, A., Rouis, Z., Salem, N.A.B., Mabrouk, S., ben Salem, Y., Salah, K.B.H., Aouni, M., Farhat, F., Chemli, R., Harzallah-Skhiri, F., and Khouja, M.L., 2012, Chemical composition of 8 Eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities, BMC Complementary Altern. Med., 12 (1), 81.

[11] Salvatori, E.S., Morgan, L.V., Ferrarini, S., Zilli, G.A.L., Rosina, A., Almeida, M.O.P., Hackbart, H.C.S., Rezende, R.S., Albeny-Simões, D., Oliveira, J.V., Gasparetto, A., Müller, L.G., and Dal Magro, J., 2023, Anti‐inflammatory and antimicrobial effects of Eucalyptus spp. essential oils: A potential valuable use for an industry byproduct, Evidence-Based Complementary Altern. Med., 2023 (1), 2582698.

[12] Le, M.T., Nguyen, N.M., and Le, X.T., 2021, Enriching terpinen-4-ol from tea tree (Melaleuca alternifolia) oil using vacuum fractional distillation: Effect of column and packings on the separation, IOP Conf. Ser.: Earth Environ. Sci., 947 (1), 012001.

[13] Widyasanti, A., Nurjanah, S., Nurhadi, B., and Osman, C.P., 2023, Optimization of the vacuum fractional distillation process for enhancing the α-guaiene of patchouli oil with response surface methodology, Separations, 10 (9), 469.

[14] Mori, N., and Usuki, T., 2022, Extraction of essential oils from tea tree (Melaleuca alternifolia) and lemon grass (Cymbopogon citratus) using betaine‐based deep eutectic solvent (DES), Phytochem. Anal., 33 (6), 831–837.

[15] Silvestre, W.P., Medeiros, F.R., Agostini, F., Toss, D., and Pauletti, G.F., 2019, Fractionation of rosemary (Rosmarinus officinalis L.) essential oil using vacuum fractional distillation, J. Food Sci. Technol., 56 (12), 5422–5434.

[16] Farah, A., Afifi, A., Fechtal, M., Chhen, A., Satrani, B., Talbi, M., and Chaouch, A., 2006, Fractional distillation effect on the chemical composition of Moroccan myrtle (Myrtus communis L.) essential oils, Flavour Fragrance J., 21 (2), 351–354.

[17] Almeida, R.N., Soares, R.P., and Cassel, E., 2018, Fractionation process of essential oils by batch distillation, Braz. J. Chem. Eng., 35, 1129–1140.

[18] Abdul-Majeed, B.A., Hassan, A.A., and Kurji, B.M., 2013, Extraction of oil from Eucalyptus camadulensis using water distillation method, Iraqi J. Chem. Pet. Eng., 14 (2), 7–12.

[19] Le, M.T., Vu, D.P., Nguyen, N.T., and Le, X.T., 2023, Isolation of citronellal and geraniol from citronella (Cymbopogon winterianus) oil by vacuum fractional distillation: Effect of operating conditions on the separation, Pol. J. Chem. Technol., 25 (4), 67–80.

[20] Salehi, B., Upadhyay, S., Erdogan Orhan, I., Kumar Jugran, A., Jayaweera, S.L.D., Dias, D.A., Sharopov, F., Taheri, Y., Martins, N., Baghalpour, N., Cho, W.C., and Sharifi-Rad, J. 2019, Therapeutic potential of α-and β-pinene: A miracle gift of nature, Biomolecules, 9 (11), 738.

[21] Baser, K.H.C., and Buchbauer, G., 2021, Handbook of Essential Oils: Science, Technology, and Applications, 3rd Ed., CRC Press, Boca Raton, Florida, US.

[22] Mohrig, J.R., Alberg, D., Hofmeister, G., Schatz, P.F., and Hammond, C.N., 2014, Laboratory Techniques in Organic Chemistry, WH Freeman, New York, US.

[23] Varyemez, H.S., and Kaymak, D.B., 2022, Effect of operating pressure on design of extractive distillation process separating DMC-MeOH azeotropic mixture, Chem. Eng. Res. Des., 177, 108–116.

[24] Nikkhah, A., Nikkhah, H., Shahbazi, A., Zarin, M.K.Z., Beykal Iz, D., Ebadi, M.T., Fakhroleslam, M., and Beykal, B., 2024, Cumin and eucalyptus essential oil standardization using fractional distillation: Data-driven optimization and techno-economic analysis, Food Bioprod. Process., 143, 90–101.

[25] Chauhan, N., Lohani, H., Shrivastava, S., Kumar, V., Zafar Haider, S., and Bhandari, U., 2024, Feasibility of fractional distillation of Eucalyptus hybrida essential oil for the separation of valuable compounds, J. Essent. Oil Bear. Plants, 27 (4), 1019–1034.



DOI: https://doi.org/10.22146/ijc.99211

Article Metrics

Abstract views : 145 | views : 107


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.