Synthesis and Characterization of Aluminosilicate Catalysts from Volcano Mud for Biofuel Production with Different Feedstocks
Hartati Hartati(1*), Qurrota A'yuni(2), Nita Safira Dewi(3), Putri Bintang Dea Firda(4), Adiba Naila Izzah(5), Didik Prasetyoko(6), Harmami Harmami(7), Shahrul Nizam Ahmad(8)
(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
(2) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
(3) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
(4) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
(5) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, UNAIR, Mulyorejo, Surabaya, 60115, Indonesia
(6) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
(7) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
(8) School of Chemistry and Environment, Faculty Sains Gunaan, Universiti Teknologi Mara, Selangor 40450, Malaysia
(*) Corresponding Author
Abstract
The increasing awareness of sustainable development goals has led to the intensive development of biofuel as a substitute for fossil fuels. This study investigates the potency of volcano mud (VM) as the precursor in synthesizing aluminosilicate catalysts for biofuel production. Three catalysts were synthesized, A3, A3T, and A5, in a manner to investigate the effect of tetrapropylammonium hydroxide (TPAOH) addition and hydrothermal time on the crystallinity, Si/Al ratio, and textural properties of the catalysts. The catalytic activity of the synthesized catalysts was evaluated in two different qualities of feedstock, i.e., oleic acid (OA) and waste cooking oil (WCO). It is found that A5 which is synthesized with longer hydrothermal of 5 h has desirable properties, a high mesoporous surface area of 159 m2/g, and a high acidity of 0.263 mmol/g. Catalyst A5 is proven to have similarly high catalytic activity in both WCO and OA feedstock, achieving a liquid yield of 93% with FAME selectivity of 95% for WCO and 95% liquid yield and FAME selectivity of 99% for OA feedstock. These results suggest that A5 is a versatile catalyst in biofuel production from either high or low-quality feedstocks.
Keywords
Full Text:
Full Text PDFReferences
[1] Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Bakker, D.C.E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I.T., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Barbero, L., Bates, N.R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I.B.M., Cadule, P., Chamberlain, M.A., Chandra, N., Chau, T.T.T., Chevallier, F., Chini, L.P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R.A., Feng, L., Ford, D.J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jacobson, A.R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R.F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P.C., McKinley, G.A., Meyer, G., Morgan, E.J., Munro, D.R., Nakaoka, S.I., Niwa, Y., O'Brien, K.M., Olsen, A., Omar, A.M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C.M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T.M., Schwinger, J., Séférian, R., Smallman, T.L., Smith, S.M., Sospedra-Alfonso, R., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tans, P.P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G.R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B., 2023, Global carbon budget 2023, Earth Syst. Sci. Data, 15, 5301–5369.
[2] Panja, P., 2021, Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study, Int. J. Modell. Simul., 41 (3), 209–219.
[3] Liang, Y., Xu, S., Zhu, M., Jiang, J., Zhang, J., Zhou, G., Hu, N., Chen, X., and Kita, H., 2023, Catalytic oxidation performance and ion-exchange of Ti-MWW zeolite membrane with dual organic template agents and potassium carbonate, J. Catal., 417, 432–444.
[4] Østergaard, P.A., Duic, N., Noorollahi, Y., Mikulcic, H., and Kalogirou, S., 2020, Sustainable development using renewable energy technology, Renewable Energy, 146, 2430–2437.
[5] Fathima Anjila, P.K., Tharani, G.R., Sundaramoorthy, A., Kumar Shanmugam, V., Subramani, K., Chinnathambi, S., Pandian, G.N., Raghavan, V., Grace, A.N., Ganesan, S., and Rajendiran, M., 2024, An ultra-sensitive detection of Melamine in milk using Rare-earth doped Graphene Quantum Dots- Synthesis and Optical Spectroscopic approach, Microchem. J., 196, 109670.
[6] Panpatte, D.G., and Jhala, Y.K., 2019, “Agricultural Waste: A Suitable Source for Biofuel Production” in Prospects of Renewable Bioprocessing in Future Energy Systems, Eds. Rastegari, A.A., Yadav, A.N., and Gupta, A., Springer International Publishing, Cham, Switzerland, 337–357.
[7] Mat Aron, N.S., Khoo, K.S., Chew, K.W., Show, P.L., Chen, W.H., and Nguyen, T.H.P., 2020, Sustainability of the four generations of biofuels – A review, Int. J. Energy Res., 44 (12), 9266–9282.
[8] Prates, C.D., Ballotin, F.C., Limborço, H., Ardisson, J.D., Lago, R.M., and Teixeira, A.P.D.C., 2020, Heterogeneous acid catalyst based on sulfated iron ore tailings for oleic acid esterification, Appl. Catal., A, 600, 117624.
[9] Dey, S., Reang, N.M., Das, P.K., and Deb, M., 2021, A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel, J. Cleaner Prod., 286, 124981.
[10] Wu, Q., Shu, Q., Guo, W., and Xing, X., 2024, Preparation of Brönsted-Lewis dual acidic catalyst Ce-HPW-F and its simultaneous catalytic esterification and transesterification of oleic acid and castor oil with methanol to synthesize biodiesel, Fuel, 361, 130668.
[11] Nisar, J., Nasir, U., Ali, G., Shah, A., Farooqi, Z.H., Iqbal, M., and Shah, M.R., 2021, Kinetics of pyrolysis of sugarcane bagasse: Effect of catalyst on activation energy and yield of pyrolysis products, Cellulose, 28 (12), 7593–7607.
[12] Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., and Nikhom, R., 2020, Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst, J. Environ. Chem. Eng., 8 (2), 103538.
[13] Ye, H., Shi, J., Wu, Y., Yuan, Y., Gan, L., Wu, Y., Xie, H., Pugazhendhi, A., and Xia, C., 2024, Research progress of nano-catalysts in the catalytic conversion of biomass to biofuels: Synthesis and application, Fuel, 356, 129594.
[14] Sánchez-Velandia, J.E., Gelves, J.F., Dorkis, L., Márquez, M.A., and Villa, A.L., 2019, Ring-opening of β-pinene epoxide into high-added value products over Colombian natural zeolite, Microporous Mesoporous Mater., 287, 114–123.
[15] Vassilina, G., Umbetkaliyeva, K., Abdrassilova, A., Vassilina, T., and Zakirov, Z., 2022, The mesoporous aluminosilicate application as support for bifunctional catalysts for n-hexadecane hydroconversion, Open Chem., 20 (1), 225–236.
[16] Feng, M., Kou, Z., Tang, C., Shi, Z., Tong, Y., and Zhang, K., 2023, Recent progress in synthesis of zeolite from natural clay, Appl. Clay Sci., 243, 107087.
[17] Lapčík, V., Kohut, O., Novák, P., and Kaločajová, A., 2018, Environmental impacts of mining of mineral resources, Inz. Miner., 2 (42), 253–263.
[18] A’yuni, Q., Rahmayanti, A., Hartati, H., Purkan, P., Subagyo, R., Rohmah, N., Itsnaini, L.R., and Fitri, M.A., 2023, Synthesis and characterization of silica gel from Lapindo volcanic mud with ethanol as a cosolvent for desiccant applications, RSC Adv., 13 (4), 2692–2699.
[19] Andarini, N., Haryati, T., Suwardiyanto, S., and Sulistiyo, Y.A., 2022, Synthesis of zeolite Y from Lapindo mud with the comparative variation of the weight of NaOH/mud and molar SiO2/Al2O3, Indones. Chim. Lett., 1 (1), 8–12.
[20] Trimayanto, S., Aminudin, M.R., and Hertiwi, L.R., 2019, Synthesis of zeolite from Lapindo mud using the hydrothermal method as a lead heavy metal (Pb) adsorbent in industrial waste, 1st GCC International Conference on Industrial Engineering and Operations Management, Riyadh, Saudi Arabia, 26–28 November 2019, 766–771.
[21] Trisunaryanti, W., Azizah, S.N., Fatmawati, D.A., Triyono, T., and Ningrum, N.C., 2022, Performance of a hybrid catalyst from amine groups and nickel nanoparticles immobilized on Lapindo mud in selective production of bio-hydrocarbons, Indones. J. Chem., 22 (4), 896–912.
[22] Hartati, H., Prasetyoko, D., Santoso, M., Qoniah, I., Leaw, W.L., Firda, P.B.D., and Nur, H., 2020, A review on synthesis of kaolin-based zeolite and the effect of impurities, J. Chin. Chem. Soc., 67 (6), 911–936.
[23] Zulfiqar, U., Subhani, T., and Husain, S.W., 2016, Synthesis and characterization of silica nanoparticles from clay, J. Asian Ceram. Soc., 4 (1), 91–96.
[24] Li, X., Han, S., Guan, D., Jiang, N., Xu, J., and Park, S.E., 2021, Rapid direct synthesis of nano-H-ZSM-5 from leached illite via solid-like-state conversion-based crystallization, Appl. Clay Sci., 203, 106028.
[25] Dapremont, A.M., and Wray, J.J., 2021, Insights into Mars mud volcanism using visible and near-infrared spectroscopy, Icarus, 359, 114299.
[26] Grand, J., Awala, H., and Mintova, S., 2016, Mechanism of zeolites crystal growth: New findings and open questions, CrystEngComm, 18 (5), 650–664.
[27] Okada, Y., Sada, Y., Miyagi, S., Yamada, H., Ohara, K., Yanaba, Y., Yoshioka, M., Ishikawa, T., Naraki, Y., Sano, T., Okubo, T., Simancas, R., and Wakihara, T., 2024, Unraveling the relationship between aging conditions, properties of amorphous precursors and CHA-type zeolite crystallization, Microporous Mesoporous Mater., In Press, Corrected Proof, 113099.
[28] Tang, S., Zhang, C., Xue, X., Pan, Z., Wang, D., and Zhang, R., 2019, Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions, J. Anal. Appl. Pyrolysis, 137, 86–95.
[29] Asgar Pour, Z., and Sebakhy, K.O., 2022, A review on the effects of organic structure-directing agents on the hydrothermal synthesis and physicochemical properties of zeolites, Chemistry, 4 (2), 431–446.
[30] Emeis, C.A., 1993, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 141 (2), 347–354.
[31] Wu, W., and Weitz, E., 2014, Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study, Appl. Surf. Sci., 316, 405–415.
[32] Alzeer, M.I.M., and MacKenzie, K.J.D., 2018, Synthesis and catalytic properties of new sustainable aluminosilicate heterogeneous catalysts derived from fly ash, ACS Sustainable Chem. Eng., 6 (4), 5273–5282.
[33] Lanzafame, P., Barbera, K., Papanikolaou, G., Perathoner, S., Centi, G., Migliori, M., Catizzone, E., and Giordano, G., 2018, Comparison of H+ and NH4+ forms of zeolites as acid catalysts for HMF etherification, Catal. Today, 304, 97–102.
[34] Hussein, M.F., Abo El Naga, A.O., El Saied, M., AbuBaker, M.M., Shaban, S.A., and El Kady, F.Y., 2021, Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel, Environ. Technol. Innovation, 21, 101355.
[35] Yadav, N., Yadav, G., and Ahmaruzzaman, M., 2023, Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies, Renewable Energy, 218, 119308.
[36] Trisunaryanti, W., Triyono, T., Paramesti, C., Larasati, S., Santoso, N.R., and Fatmawati, D.A., 2020, Synthesis and characterization of Ni-NH2/mesoporous silica catalyst from Lapindo mud for hydrocracking of waste cooking oil into biofuel, Rasayan. J. Chem., 13 (3), 1386–1393.
[37] Nugraha, R.E., Prasetyoko, D., Asikin-Mijan, N., Bahruji, H., Suprapto, S., Taufiq-Yap, Y.H., dan Jalil, A.A., 2021, The effect of structure directing agents on micro/mesopore structures of aluminosilicates from Indonesian kaolin as deoxygenation catalysts, Microporous Mesoporous Mater., 315, 110917.
[38] Hur, Y.G., Kester, P.M., Nimlos, C.T., Cho, Y.R., Miller, J.T., and Gounder, R., 2019, Influence of tetrapropylammonium and ethylenediamine structure-directing agents on the framework Al distribution in B-Al-MFI zeolites, Ind. Eng. Chem. Res., 58 (27), 11849–11860.
[39] Ryu, G.U, Kim, G.M., Khalid, H.R., Lee, H.K., 2019, The effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite using blast furnace slag, Materials, 12 (13), 2131.
[40] Ellerbrock, R., Stein, M., and Schaller, J., 2022, Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR, Sci. Rep., 12 (1), 11708.
[41] Diwakar, J., Viswanadham, N., Saxena, S.K., Kumar, S., and Al-Muhtaseb, A.H., 2018, Liquid-phase solvent-less reactions for value addition of glycerol and phenols over nano porous aluminosilicates, Mater. Today Commun., 15, 260–268.
[42] Maziz, A., Chouat, N., Bensafi, B., and Djafri, F., 2023, dTG and FTIR investigation of methanol behavior adsorbed within MFI-type zeolites, J. Porous Mater., 30 (4), 1403–1415.
[43] Hartanto, D., Yuan, L.S., Mutia Sari, S., Sugiarso, D., Kris Murwarni, I., Ersam, T., Prasetyoko, D., and Nur, H., 2016, The use of the combination of FTIR, pyridine adsorption, 27Al and 29Si MAS NMR to determine the Brönsted and Lewis acidic sites, J. Teknol., 78 (6), 223–228.
[44] Ramesh, K., Reddy, K.S., Rashmi, I., and Biswas, A.K., 2014, Porosity distribution, surface area, and morphology of synthetic potassium zeolites: A SEM and N2 adsorption study, Commun. Soil Sci. Plant Anal., 45 (16), 2171–2181.
[45] Soboleva, T., Zhao, X., Malek, K., Xie, Z., Navessin, T., and Holdcroft, S., 2010, On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers, ACS Appl. Mater. Interfaces, 2 (2), 375–384.
[46] Xie, W., Wang, Q., Guo, L., and Zhang, Q., 2024, Improved biodiesel production from soybean oil using molybdenum-zirconium doped aluminosilicates as heterogeneous catalysts, Bioenergy Res., 17 (1), 532–546.
[47] Canhaci, S.J., Albuquerque, E.M., Lopes, C.C., Faria, V.W., Chinelatto Junior, L.S., Duarte de Farias, A.M., Quitete, C.B., and Fraga, M.A., 2023, Balance between Catalyst Acidity and Hydrophilicity in Biofuel Production from Fatty Acid Esterification over Al-SBA-15, Catalysts, 13 (5), 827.
[48] Sahel, F., Sebih, F., Bellahouel, S., Bengueddach, A., and Hamacha, R., 2020, Synthesis and characterization of highly ordered mesoporous nanomaterials Al-MCM-41 and Al-SBA-15 from bentonite as efficient catalysts for the production of biodiesel MELA and EELA, Res. Chem. Intermed., 46 (1), 133–148.
[49] Hossain, M.N., Siddik Bhuyan, M.S.U., Md Ashraful Alam, A.H., and Seo, Y.C., 2019, Optimization of biodiesel production from waste cooking oil using S–TiO2/SBA-15 heterogeneous acid catalyst, Catalysts, 9 (1), 67.
[50] Derbe, T., Zereffa, E.A., Sani, T., and Girma, T., 2024, Synthesis of green heterogeneous bifunctional zeolite-A/biochar catalyst for the production of biodiesel from waste cooking oil, Catal. Lett., s10562-024-04746-3.
DOI: https://doi.org/10.22146/ijc.96149
Article Metrics
Abstract views : 522 | views : 260Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.