Characterization of Zn-Doped MgTiO3 Powders Synthesized by Dissolved Metals Mixing Method

https://doi.org/10.22146/ijc.95879

Musyarofah Musyarofah(1*), Isao Tanaka(2), Zakiah Mohamed(3), Yingyot Poo-arporn(4), Lusi Ernawati(5), Gatut Yudoyono(6), Budi Prayitno(7)

(1) Department of Physics, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(2) Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
(3) Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
(4) Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima 30000, Thailand
(5) Department of Chemical Engineering, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
(6) Department of Physics, Institut Teknologi Sepuluh Nopember, Jl. Arief Rahman Hakim, Surabaya 60111, Indonesia
(7) Department of Mechanical Engineering, Universitas Balikpapan, Jl. Pupuk Raya, Balikpapan 76114, Indonesia
(*) Corresponding Author

Abstract


Zn-doped magnesium titanate powders with different Zn compositions, x = 0 to 1, were synthesized using the dissolved metals mixing method. The roles of calcination temperature and dopant Zn composition on powder morphology, phase composition, crystallite size, crystalline cell volume, and local environment were investigated through scanning electron microscope (SEM) observation, Rietveld analysis of powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray absorption spectroscopy (XAS) for Ti K-edge X-ray absorption near edge structures (XANES). We found that the geikielite solid solutions were formed during the pre-calcination at 400 °C for 1 h. Results show spherical particles (~1 µm) with minimal size variation across calcination temperatures (600–800 °C) and Zn compositions, though some agglomeration occurs. After calcination at 600 °C for 4 h, the crystalline cell volume of geikielite was proportional to the Zn composition, implying the formation of the solid solution in the range of Zn composition up to the level close to x = 1. This successful synthesis of the Zn-doped magnesium titanate nanocrystals at temperatures much lower than those required by the solid-state reaction method was thereby well demonstrated.

Keywords


geikielite; dissolved metals mixing method; calcination; Zn-doped; structural properties

Full Text:

Full Text PDF


References

[1] Magar, H.S., Mansour, A.M., and Hammad, A.B.A., 2024, Advancing energy storage and supercapacitor applications through the development of Li+-doped MgTiO3 perovskite nano-ceramics, Sci. Rep., 14 (1), 1849.

[2] Mallick, P., Mishra, S., Fatma, N., Das, D.K., Moharana, S., and Satpathy, S.K., 2024, “Microwave Dielectric Properties of Electroceramics” in Defects Engineering in Electroceramics for Energy Applications, Eds. Kumar, U., Springer Nature Singapore, Singapore, 351–370.

[3] Rabha, S., and Dobbidi, P., 2021, Structural, electrical properties and stability in microwave dielectric properties of (1−x)MgTiO3-x SrTiO3 composite ceramics, J. Alloys Compd., 872, 159726.

[4] Mohapatra, S., Barman, R., Das, T.K., Badapanda, T., Huang, Y., Xiao, J., and Tripathy, S.N., 2024, Structure property correlation of (1-x)MgTiO3 - xSrTiO3 microwave dielectric ceramics for dielectric resonator antenna applications, Ceram. Int., 50 (18, Part A), 31792–31808.

[5] Bouzaid, A., Ziat, Y., Belkhanchi, H., Hamdani, H., Koufi, A., Miri, M., Laghlimi, C., and Zarhri, Z., 2024, Ab initio study of the structural, electronic, and optical properties of MgTiO3 perovskite materials doped with N and P, E3S Web Conf., 582, 02006.

[6] Musyarofah, M., Damanik, E.F., Husain, H., Yudoyono, G., Mohamed, Z., Poo-arporn, Y., and Prayitno, B., 2022, Local structure studies of magnesium titanate powders using time-resolved X-ray absorption spectroscopy (TRXAS) measurements, AIP Conf. Proc., 2708 (1), 060001.

[7] Musyarofah, M., Damanik, E.F., Septiana, A.R., Shoodiqin, D.M., Husain, H., and Yudoyono, G., 2022, Phase study of Mg1-xZnxTiO3 powders prepared by dissolved metals mixing method, AIP Conf. Proc., 2652 (1), 050013.

[8] Feng, Y., Wu, J., Chi, Q., Li, W., Yu, Y., and Fei, W., 2020, Defects and aliovalent doping engineering in electroceramics, Chem. Rev., 120 (3), 1710–1787.

[9] Grünert, W., and Klementiev, K., 2020, X-ray absorption spectroscopy principles and practical use in materials analysis, Phys. Sci. Rev., 5 (4), 2017018.

[10] Bin Adnan, M.A., Arifin, K., Minggu, L.J., and Kassim, M.B., 2018, Titanate-based perovskites for photochemical and photoelectrochemical water splitting applications: A review, Int. J. Hydrogen Energy, 43 (52), 23209–23220.

[11] Shariatinia, Z., and Karimzadeh, Z., 2024, Perovskite oxides as efficient bioactive inorganic materials in tissue engineering: A review, Mater. Today Chem., 35, 101846.

[12] Musyarofah, M., Soontaranon, S., Limphirat, W., Triwikantoro, and Pratapa, S., 2019, XRD, WAXS, FTIR, and XANES studies of silica zirconia systems, Ceram. Int., 45 (12), 15660–15670.

[13] Pratapa, S., Baqiya, M.A., Istianah, I., Lestari, R., and Angela, R., 2014, A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals, AIP Conf. Proc., 1586 (1), 39–42.

[14] Ermawati, F.U., Suasmoro, S., and Suminar, P., 2015, A simple dissolved metals mixing route to prepare nanostructured Mg0.8Zn0.2TiO3 solid solution, Adv. Mater. Res., 1112, 47–52

[15] Musyarofah, M., Sari, Y.P., Hilmi, A.R., Asrori, M.Z., Triwikantoro, T., Zainuri, M., Kim, B.N., and Pratapa, S., 2023, Ultra-dense (Bi, V, B)-oxide-added zircon ceramics fabricated by liquid-phase assisted spark plasma sintering (SPS), Mater. Res. Express, 10 (5), 055002.

[16] Zhou, X., Yuan, Y., Xiang, L., and Huang, Y., 2007, Synthesis of MgTiO3 by solid state reaction and characteristics with addition, J. Mater. Sci., 42 (16), 6628–6632.

[17] Liou, Y.C., and Yang, S.L., 2007, Calcium-doped MgTiO3–MgTi2O5 ceramics prepared using a reaction-sintering process, Mater. Sci. Eng., B, 142 (2), 116–120.

[18] Young, R.A., 1995, The Rietveld Method, Oxford University Press, New York, USA.

[19] Jaramillo-Fierro, X., González, S., Jaramillo, H.A., and Medina, F., 2020, Synthesis of the ZnTiO3/TiO2 nanocomposite supported in Ecuadorian clays for the adsorption and photocatalytic removal of methylene blue dye, Nanomaterials, 10 (9), 1981.

[20] Hassanzadeh-Tabrizi, S.A., 2023, Precise calculation of crystallite size of nanomaterials: A review, J. Alloys Compd., 968, 171914.

[21] Cai, Z., Zhou, H., Song, J., Zhao, F., and Li, J., 2011, Preparation and characterization of Zn0.9Mg0.1TiO3 via electrospinning, Dalton Trans., 40 (33), 8335–8339.

[22] Henderson, G.S., de Groot, F.M.F., and Moulton, B.J.A., 2014, X-ray absorption near-edge structure (XANES) spectroscopy, Rev. Mineral. Geochem., 78 (1), 75–138.

[23] Yamamoto, T., Mizoguchi, T., and Tanaka, I., 2005, Core-hole effect on dipolar and quadrupolar transitions of SrTiO3 and BaTiO3 at Ti K edge, Phys. Rev. B, 71 (24), 245113–245117

[24] Mathew, K., Zheng, C., Winston, D., Chen, C., Dozier, A., Rehr, J.J., Ong, S.P., and Persson, K.A., 2018, High-throughput computational X-ray absorption spectroscopy, Sci. Data, 5 (1), 180151.

[25] Tobase, T., Yoshiasa, A., Komatsu, T., Maekawa, T., Hongu, H., Okube, M., Arima, H., and Sugiyama, K., 2019, Titanium local coordination environments in Cretaceous–Paleogene and Devonian–Carboniferous boundary sediments as a possible marker for large meteorite impact, Phys. Chem. Miner., 46 (7), 675–685.



DOI: https://doi.org/10.22146/ijc.95879

Article Metrics

Abstract views : 770 | views : 232


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.