The Study of Removal of Polyvinyl Chloride (PVC) Particles from Wastewater through Electrocoagulation
Azaria Ivana Ramadani(1), Qonitah Fardiyah(2*), Barlah Rumhayati(3)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Yona, D., Zahran, M.F., Fuad, M.A.Z., Prananto, Y.P., and Harlyan, L.I., 2021, Mikroplastik di Perairan: Metode Sampling, dan Analisis Laboratorium, UB Press, Malang, Indonesia.
[2] Thacharodi, A., Meenatchi, R., Hassan, S., Hussain, N., Bhat, M.A., Arockiaraj, J., Ngo, H.H., Le, Q.H., and Pugazhendhi, A., 2024, Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies, J. Environ. Manage., 349, 119433.
[3] Alsabri, A., and Al-Ghamdi, S.G., 2020, Carbon footprint and embodied energy of PVC, PE, and PP piping: Perspective on environmental performance, Energy Rep., 6, 364–370.
[4] Suresh, S.S., Mohanty, S., and Nayak, S.K., 2017, Composition analysis and characterization of waste polyvinyl chloride (PVC) recovered from data cables, Waste Manage., 60, 100–111.
[5] Avio, C.G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d’Errico, G., Pauletto, M., Bargelloni, L., and Regoli, F., 2015, Pollutants bioavailability and toxicological risk from microplastics to marine mussels, Environ. Pollut., 198, 211–222.
[6] Kosuth, M., Mason, S.A., and Wattenberg, E.V., 2018, Anthropogenic contamination of tap water, beer, and sea salt, PLoS One, 13 (4), e0194970.
[7] Wang, J., Xu, Z., Yao, J., Hu, M., Sun, Y., Dong, C., and Bu, Z., 2022, Identification of phthalates from artificial products in Chinese kindergarten classrooms and the implications for preschool children’s exposure assessments, Int. J. Environ. Res. Public Health, 19 (13), 8011.
[8] Akarsu, C., Kumbur, H., and Kideys, A.E., 2021, Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes, Water Sci. Technol., 84 (7), 1648–1662.
[9] Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., Xu, J., Zhu, J., Pan, Y., Sun, Y., and Xie, Y., 2020, Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions, Angew. Chem., Int. Ed., 59 (36), 15497–15501.
[10] Cherian, A.G., Liu, Z., McKie, M.J., Almuhtaram, H., and Andrews, R.C., 2023, Microplastic removal from drinking water using point-of-use devices, Polymers, 15 (6), 1331.
[11] Prokopova, M., Novotna, K., Pivokonska, L., Cermakova, L., Cajthaml, T., and Pivokonsky, M., 2021, Coagulation of polyvinyl chloride microplastics by ferric and aluminium sulphate: Optimisation of reaction conditions and removal mechanisms, J. Environ. Chem. Eng., 9 (6), 106465.
[12] Ren, J., Li, J., Zhen, Y., Wang, J., and Niu, Z., 2022, Removal of polyvinyl chloride microplastic by dielectric barrier discharge plasma, Sep. Purif. Technol., 290, 120832.
[13] Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., and Wang, X., 2020, Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode, J. Hazard. Mater., 399, 123023.
[14] Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T., and Tünay, O., 2012, Electrocoagulation applications for industrial wastewaters: A critical review, Environ. Technol. Rev., 1 (1), 2–45.
[15] Shivayogimath, C.B., and Naik, V.R., 2014, Treatment of dairy industry wastewater using electrocoagulation technique, Int. J. Eng. Res. Sci. Technol., 3 (7), 971–974.
[16] Padervand, M., Lichtfouse, E., Robert, D., and Wang, C., 2020, Removal of microplastics from the environment. A review, Environ. Chem. Lett., 18 (3), 807–828.
[17] Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., and Zeng, G., 2022, Efficient removal of microplastics from wastewater by an electrocoagulation process, Chem. Eng. J., 428, 131161.
[18] Hu, Y., Zhou, L., Zhu, J., and Gao, J., 2023, Efficient removal of polyamide particles from wastewater by electrocoagulation, J. Water Process Eng., 51, 103417.
[19] Perren, W., Wojtasik, A., and Cai, Q., 2018, Removal of microbeads from wastewater using electrocoagulation, ACS Omega, 3 (3), 3357–3364.
[20] Salis, A., and Monduzzi, M., 2016, Not only pH. Specific buffer effects in biological systems, Curr. Opin. Colloid Interface Sci., 23, 1–9.
[21] Khandegar, V., and Saroha, A.K., 2013, Electrocoagulation for the treatment of textile industry effluent – A review, J. Environ. Manage., 128, 949–963.
[22] Keyikoglu, R., Can, O.T., Aygun, A., and Tek, A., 2019, Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process, Colloid Interface Sci. Commun., 33, 100210.
[23] Rosariawari, F., Rachmanto, T.A., Mirwan, M., and Rahmayanti, D., 2021, Electrocoagulation process to reduce microplastic in Wonokromo surface water, Nusantara Sci. Technol. Proc., 2021, 142–147.
[24] Elkhatib, D., Oyanedel-Craver, V., and Carissimi, E., 2021, Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities, Sep. Purif. Technol., 276, 118877.
[25] Liu, F., Zhang, C., Li, H., Offiong, N.A.O., Bi, Y., Zhou, R., and Ren, H., 2023, A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment, Chem. Eng. J., 456, 141078.
[26] Cahyanti, E.D., and Marwati, S., 2017, Optimalisasi kondisi elektrokogulasi ion logam timbal (II) dalam air limbah elektroplating, J. Kim. Das., 6 (4), 143–150.
[27] Aini, H.N., Rumhayati, B., Fardiyah, Q., Wiryawan, A., Andayani, U., and Azzah, A.N., 2023, The effect of pH and nitrate ions as a matrix on phosphate measurement using polymeric inclusion membranes (PIMs), AIP Conf. Proc., 2903 (1), 020001.
[28] Ali, A., Malik, N.A., Uzair, S., Ali, M., and Ahmad, M.F., 2014, Hexadecyltrimethylammonium bromide micellization in glycine, diglycine, and triglycine aqueous solutions as a function of surfactant concentration and temperatures, Russ. J. Phys. Chem. A, 88 (6), 1053–1061.
[29] Azum, N., Naqvi, A.Z., Rub, M.A., and Asiri, A.M., 2017, Multi-technique approach towards amphiphilic drug-surfactant interaction: A physicochemical study, J. Mol. Liq., 240, 189–195.
[30] Makowska, J., Wyrzykowski, D., Pilarski, B., and Chmurzyński, L., 2015, Thermodynamics of sodium dodecyl sulphate (SDS) micellization in the presence of some biologically relevant pH buffers, J. Therm. Anal. Calorim., 121 (1), 257–261.
[31] Allahbakhsh, A., and Mazinani, S., 2015, Influences of sodium dodecyl sulfate on vulcanization kinetics and mechanical performance of EPDM/graphene oxide nanocomposites, RSC Adv., 5 (58), 46694–46704.
[32] Wołowicz, A., and Staszak, K., 2020, Study of surface properties of aqueous solutions of sodium dodecyl sulfate in the presence of hydrochloric acid and heavy metal ions, J. Mol. Liq., 299, 112170.
[33] Moura, D.S., Pestana, C.J., Moffat, C.F., Hui, J., Irvine, J.T.S., and Lawton, L.A., 2023, Characterisation of microplastics is key for reliable data interpretation, Chemosphere, 331, 138691.
[34] Koestner, D., Foster, R., and El-Habashi, A., 2023, On the potential for optical detection of microplastics in the ocean, Oceanography, 36, 49–51.
[35] Moussa, D.T., El-Naas, M.H., Nasser, M., and Al-Marri, M.J., 2017, A comprehensive review of electrocoagulation for water treatment: Potentials and challenges, J. Environ. Manage., 186, 24–41.
[36] Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., and Vemuri, J., 2023, A state-of-the-art review of the electrocoagulation technology for wastewater treatment, Water Cycle, 4, 26–36.
[37] Abdul Rahman, A.M.N.A., Rusli, A., Abdullah, M.K., Shuib, R.K., Abdul Hamid, Z.A., Ku Ishak, K.M., Mohd Zaini Makhtar, M., Jaafar, M., and Shafiq, M.D., 2023, A review of microplastic surface interactions in water and potential capturing methods, Water Sci. Eng., 2023, In Press, Corrected Proof.
[38] Haque, M.N., Kwon, S., and Cho, D., 2017, Formation and stability study of silver nano-particles in aqueous and organic medium, Korean J. Chem. Eng., 34 (7), 2072–2078.
[39] Raja, S., Ramesh, V., and Thivaharan, V., 2017, Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability, Arabian J. Chem., 10 (2), 253–261.
[40] Erdogan, O., Abbak, M., Demirbolat, G.M., Birtekocak, F., Aksel, M., Pasa, S., and Cevik, O., 2019, Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells, PLoS One, 14 (6), e0216496.
DOI: https://doi.org/10.22146/ijc.95589
Article Metrics
Abstract views : 2403 | views : 870Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.