Semiconductor Gas Sensors: Metal Oxides, Synthesis Methods, Applications as Gas Sensors, and Oxidation and Reduction Mechanisms

https://doi.org/10.22146/ijc.95018

Inam Abed Hammod(1*), Noor Jawad Ridha(2), Khawla Jemeel Tahir(3), Firas Kamel Mohamad Alosfur(4), Asaad Sabbar Yasir(5), Luma Ahmed Majeed(6)

(1) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq; Department of Physiology and Medical Physics, College of Medicine, University of Kerbala, Karbala 56001, Iraq
(2) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
(3) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
(4) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
(5) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
(6) Department of Physics, College of Science, University of Kerbala, Karbala 56001, Iraq
(*) Corresponding Author

Abstract


Over the last several decades, advancements in industry have facilitated the absorption of harmful gases into the bloodstream or lungs via dermal absorption or inhalation. This process may elicit diverse cellular responses, potentially leading to adverse health effects. Consequently, air pollution has emerged as a significant worldwide issue. Hence, developing a device capable of monitoring air pollution and detecting these chemicals in the surrounding environment became imperative. Gas sensors are instruments used for regulating industrial emissions, surveillance of environmental contaminants, and identification of pollutants and hazardous gases. Semiconductor gas sensors have garnered significant recognition owing to their several advantageous characteristics, including simplified production processes, compact dimensions, and low-cost. Some of its drawbacks include limited selectivity and high operating temperatures. This review discusses the most often used semiconducting materials in gas sensing, as well as the methods used to synthesize them, and the reduction and oxidation processes that happen between metal oxides and analyte gas. Furthermore, the various strategies employed to increase the gas-sensing response are explored, such as doping with noble metals and the formation of heterostructures.

Keywords


gas sensor; semiconductor; metal oxides; synthesis methods; heterojunction

Full Text:

Full Text PDF


References

[1] Mirzaei, A., Lee, J.H., Majhi, S.M., Weber, M., Bechelany, M., Kim, H.W., and Kim, S.S., 2019, Resistive gas sensors based on metal-oxide nanowires, J. Appl. Phys., 126 (24), 241102.

[2] Hermawan, A., Septiani, N.L.W., Taufik, A., Yuliarto, B., Suyatman, S., and Yin, S., 2021, Advanced strategies to improve performances of molybdenum-based gas sensors, Nano-Micro Lett., 13, 207.

[3] Ji, H., Zeng, W., and Li, Y., 2019, Gas sensing mechanisms of metal oxide semiconductors: A focus review, Nanoscale, 11 (47), 22664–22684.

[4] Liu, L., Wang, Y., Liu, Y., Wang, S., Li, T., Feng, S., Qin, S., and Zhang, T., 2022, Heteronanostructural metal oxide-based gas microsensors, Microsyst. Nanoeng., 8 (1), 85.

[5] Wawrzyniak, J., 2023, Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry, Sensors, 23 (23), 9548.

[6] Chai, H., Zheng, Z., Liu, K., Xu, J., Wu, K., Luo, Y., Liao, H., Debliquy, M., and Zhang, C., 2022, Stability of metal oxide semiconductor gas sensors: A review, IEEE Sens. J., 22 (6), 5470–5481.

[7] Lu, N., Fan, S., Zhao, Y., Yang, B., Hua, Z., and Wu, Y., 2021, A selective methane gas sensor with printed catalytic films as active filters, Sens. Actuators, B, 347, 130603.

[8] Liang, Y., Wu, C., Jiang, S., Jie , Y., Wu, D., Li, M., Cheng, P., Yang, W., Cheng, C., Li, L., Deng, T., Sun, J.Y., He, G., Liu, B., Yao, T., Wu, M., and Zhou, Z., 2021, Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements, Sens. Actuators, B, 327, 128897.

[9] Feng, W., Qu, Y., Gao, Y., and Ma, Y., 2021, Advances in fiber-based quartz enhanced photoacoustic spectroscopy for trace gas sensing, Microwave Opt. Technol. Lett., 63 (8), 2031–2039.

[10] Zheng, Q., Zhang, H., Liu, J., Xiao, L., Ao, Y., and Li, M., 2021, High porosity fluorescent aerogel with new molecular probes for formaldehyde gas sensors, Microporous Mesoporous Mater., 325, 111208.

[11] Amirjani, A., and Rahbarimehr, E., 2021, Recent advances in functionalization of plasmonic nanostructures for optical sensing, Microchim. Acta, 188 (2), 57.

[12] Amirjani, A., Salehi, K., and Sadrnezhaad, S.K., 2022, Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions, Spectrochim. Acta, Part A, 268, 120692.

[13] Amirjani, A., Kamani, P., Hosseini, H.R.M., and Sadrnezhaad, S.K., 2022, SPR-based assay kit for rapid determination of Pb2+, Anal. Chim. Acta, 1220, 340030.

[14] Shahsavandi, F., Amirjani, A., and Reza Madaah Hosseini, H., 2022, Plasmon-enhanced photocatalytic activity in the visible range using AgNPs/polydopamine/graphitic carbon nitride nanocomposite, Appl. Surf. Sci., 585, 152728.

[15] Moumen, A., Kumarage, G., and Comini, E., 2022, P‐type metal oxide semiconductor thin films: synthesis and chemical sensor applications, Sensors, 22 (4), 1359.

[16] Abdeslam, A.A., Fouad, K., and Khalifa, A., 2020, Design and optimization of platinium heaters for gas sensor, Dig. J. Nanomater. Biostruct., 15 (1), 133–141.

[17] Hasan, M.N., Acharjee, D., Kumar, D., Kumar, A., and Maity, S., 2016, Simulation of low power heater for gas sensing application, Procedia Comput. Sci., 92, 213–221.

[18] Yuan, Z., Li, R., Meng, F., Zhang, J., Zuo, K., and Han, E., 2019, Approaches to enhancing gas sensing properties: A review, Sensors, 19 (7), 1495.

[19] Alamri, M., Liu, B., Berrie, C.L, Walsh, M., and Wu, J.Z., 2022, Probing the role of CNTs in Pt nanoparticle/CNT/graphene nanohybrids H2S sensors, Nano Express, 3 (3), 035004.

[20] Guan, W., Tang, N., He, K., Hu, X., Li, M., and Li, K., 2020, Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: A mini review, Front. Chem., 8, 00076.

[21] Riente, P., and Noël, T., 2019, Application of metal oxide semiconductors in light-driven organic transformations, Catal. Sci. Technol., 9 (19), 5186–5232.

[22] Li, B., Zhou, Q., Peng, S., and Liao, Y., 2020, Recent advances of SnO2-based sensors for detecting volatile organic compounds, Front. Chem., 8, 00321.

[23] Nalimova, S., Shomakhov, Z, and Moshnikov, V., 2023, Binary and ternary oxide nanostructured multisystems for gas sensors, Eng. Proc., 48 (1), 47.

[24] Zhao, G., Xuan, J., Liu, X., Jia, F., Sun, Y., Sun, M., Yin, G., and Liu, B., 2019, Low-cost and high-performance ZnO nanoclusters gas sensor based on new-type FTO electrode for the low-concentration H2S gas detection, Nanomaterials, 9 (3), 435.

[25] Khort, A., Haiduk, Y., Taratyn, I., Moskovskikh, D., Podbolotov, K., Usenka, A., Lapchuk, N., and Pankov, V., 2023, High-performance selective NO2 gas sensor based on In2O3–graphene–Cu nanocomposites, Sci. Rep., 13 (1), 7834.

[26] Lu, Z., Ma, Z., Song, P., and Wang, Q., 2021, Facile synthesis of CuO nanoribbons/rGO nanocomposites for high-performance formaldehyde gas sensor at low temperature, J. Mater. Sci.: Mater. Electron., 32 (14), 19297–19308.

[27] Ren, Z., Shi Y., Song, T., Y., Wang, T., Tang, B., Niu, H., and Yu, X., 2021, Flexible low-temperature ammonia gas sensor based on reduced graphene oxide and molybdenum disulfide, Chemosensors, 9 (12), 345.

[28] Lei, G., Lou, C., Liu, X., Xie, J., Li, Z., Zheng, W., and Zhang, J., 2021, Thin films of tungsten oxide materials for advanced gas sensors, Sens. Actuators, B, 341, 129996.

[29] Kamble C., and Panse, M., 2019, IDE embedded tungsten trioxide gas sensor for sensitive NO2 detection, Mater. Chem. Phys., 224, 257–263.

[30] Saruhan, B., Lontio Fomekong, R., and Nahirniak, S., 2021, Review: Influences of semiconductor metal oxide properties on gas sensing characteristics, Front. Sens., 2, 657931.

[31] Zhang, H., Guo, Y., and Meng, F., 2022, Metal oxide semiconductor sensors for triethylamine detection: Sensing performance and improvements, Chemosensors, 10 (6), 231.

[32] Zhang, D., Yang, Z., Yu, S., Mi, Q., and Pan, Q., 2020, Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects, Coord. Chem. Rev., 413, 213272.

[33] Suhendi, E., Amanda, Z.L., Ulhakim, M.T., Setiawan, A., and Syarif, D.G., 2021, The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor, J. Met., Mater. Miner., 31 (2), 71–77.

[34] Kadhim, H., Ahmed, L., and AL-Hachamii, M., 2022, Facile synthesis of spinel CoCr2O4 and its nanocomposite with ZrO2: Employing in photo‐catalytic decolorization of Fe (II)(luminol-tyrosine) complex, Egypt. J. Chem., 65 (1), 481–488.

[35] Galstyan, V., Ponzoni, A., Kholmanov, I., Natile, M.M., Comini, E., and Sberveglieri, G., 2022, Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control, Sens. Actuators, B, 303, 127217.

[36] Jawad, T.M., AL-Lami, M.R., Hasan, A.S., Al-Hilifi, J.A., Mohammad, R.K., and Ahmed, L., 2021, Synergistic effect of dark and photoreactions on the removal and photo-decolorization of azo carmosine dye (E122) as food dye using rutile-TiO2 suspension, Egypt. J. Chem., 64 (9), 4857–4865.

[37] Nikolic, M.V., Milovanovic, V., Vasiljevic, Z.Z., and Stamenkovic, Z., 2020, Semiconductor gas sensors: Materials, technology, design, and application, Sensors, 20 (22), 6694.

[38] Aarti, A., Gaur, A., Chand, P., Shah, J., and Kotnala, R.K., 2022, Tin oxide (SnO2)-decorated reduced graphene oxide (rGO)-based hydroelectric cells to generate large current, ACS Omega, 7 (48), 43647–43656.

[39] Annanouch, F.E., Bendahan, M., Bouchet, G., Perrier, P., Morati, N., Martini-Laithier, V., Fiorido, T., and Aguir, K., 2019, Optimized testing chamber for qualified sensor responses measurement, Sens. Transducers, 222 (6), 12–17.

[40] Chen, T., Sun, J., Xue, N., Wang, W., Luo, Z., Liang, Q., Zhou, T., Quan, H., Cai, H., Tang, K., and Jiang, K., 2023, Cu-doped SnO2/rGO nanocomposites for ultrasensitive H2S detection under low temperature, Microsyst. Nanoeng., 9 (1), 69.

[41] Ayesh, A.I., Alyafei, A.A., Anjum, R.S., Mohamed, R.M., Abuharb, M.B., Salah, B., and El-Muraikhi, M., 2019, Production of sensitive gas sensors using CuO/SnO2 nanoparticles, Appl. Phys. A, 125 (8), 550.

[42] Guo, J., Li, W., Zhao, X., Hu, H., Wang, M., Luo, Y., Xie, D., Zhang, Y., and Zhu, H., 2021, Highly sensitive, selective, flexible and scalable room-temperature NO2 gas sensor based on hollow SnO2/ZnO nanofibers, Molecules, 26 (21), 6475.

[43] Rodiawan, R., Wang, S.C., and Suhdi, S., 2023, Gold-nanoparticle-decorated tin oxide of a gas sensor material for detecting low concentrations of hydrogen sulfide, Sens. Mater., 35 (3), 1121–1130.

[44] Steinhauer, S., 2021, Gas sensors based on copper oxide nanomaterials: A review, Chemosensors, 9 (3), 51.

[45] Peng, F., Sun, Y., Lu, Y., Yu, W., Ge, M., Shi, J., Cong, R., Hao, J., and Dai, N., 2020, Studies on sensing properties and mechanism of CuO nanoparticles to H2S gas, Nanomaterials, 10 (4), 774.

[46] Hittini, W., Abu-Hani, A., Reddy, N., and Mahmoud, S.T., 2020, Cellulose-copper oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures, Sci. Rep., 10 (1), 2940.

[47] Bharathi, P., Karthigeyan, S., and Krishna, M., 2022, Synthesis and functional properties of ZnO/CuO nanocomposite for gas sensing applications, IOP Conf. Ser.: Mater. Sci. Eng., 1219 (1), 012053.

[48] Chen, X., Liu, T., Ouyang, Y., Huang, S., Zhang, Z., Liu, F., Qiu, L., Wang, C., Lin, X., Chen, J., and Shen, Y., 2024, Influence of different Pt functionalization modes on the properties of CuO gas-sensing materials, Sensors, 24 (1), 120.

[49] Bo, Z., Wei, X., Guo, X., Yang, H., Mao, S., Yan, J., and Cen, K., 2020, SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor, Chem. Phys. Lett., 750, 137485.

[50] Hummers Jr, W.S., and Offeman, R.E., 1958, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (6), 1339.

[51] Imamura, G., Minami, K., Shiba, K., Mistry, K., Musselman, K.P., Yavuz, M., Yoshikawa, G., Saiki, K., and Obata, S., 2020, Graphene oxide as a sensing material for gas detection based on nanomechanical sensors in the static mode, Chemosensors, 8 (3), 82.

[52] Tiwary, S.K., Singh, M, Chavan, S.V., and Karim, A., 2024, Graphene oxide-based membranes for water desalination and purification, npj 2D Mater. Appl., 8 (1), 27.

[53] Zare, P., Aleemardani, M., Seifalian, A., Bagher, Z., and Seifalian, A.M., 2021, Graphene oxide: Opportunities and challenges in biomedicine, Nanomaterials, 11 (5), 1083.

[54] Sethi, J., Van Bulck, M., Suhail, A., Safarzadeh, M., Perez-Castillo, A., and Pan, G., 2020, A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers, Microchim. Acta, 187 (5), 288.

[55] Sachdeva, H., 2020, Recent advances in the catalytic applications of GO/rGO for green organic synthesis, Green Process. Synth., 9 (1), 515–537.

[56] Kumar, H., Sharma, R., Yadav, A., and Kumari, R., 2021, Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: A review, J. Energy Storage, 33, 102032.

[57] Wu, J., Lin, H., Moss, D.J., Loh, K.P., and Jia, B., 2023, Graphene oxide for photonics, electronics and optoelectronics, Nat. Rev. Chem., 7 (3), 162–183.

[58] Song, S.H., Yoo, J.I., Kim, H.B., Kim, Y.S., So Kim, S., and Song, J.K., 2022, Hole injection improvement in quantum-dot light-emitting diodes using bi-layered hole injection layer of PEDOT:PSS and V2Ox, Opt. Laser Technol., 149, 107864.

[59] Lun, D., and Xu, K., 2022, Recent progress in gas sensor based on nanomaterials, Micromachines, 13 (6), 919.

[60] Khune, A.S., Padghan, V., Bongane, R., Narwade, V.N., Dole, B.N., Ingle, N.N., Tsai, M.L., Hianik, T., and Shirsat, M.D., 2023, Highly selective chemiresistive SO2 sensor based on a reduced graphene oxide/porphyrin (rGO/TAPP) composite, J. Electron. Mater., 52 (12), 8108–8123.

[61] Smith, A.T., LaChance, A.M., Zeng, S., Liu, B., and Sun, L., 2019, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci., 1 (1), 31–47.

[62] Majhi, S.M., Mirzaei, A., Kim, H.W., and Kim, S.S., 2021, Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: An overview, Sensors, 21 (4), 1352.

[63] Pisarkiewicz, T., Maziarz, W., Małolepszy, A., Stobiński, L., Michoń, D., and Rydosz, A., 2020, Multilayer structure of reduced graphene oxide and copper oxide as a gas sensor, Coatings, 10 (11), 1015.

[64] Song, Z., Yan, J., Lian, J., Pu, W., Jing, L., Xu, H., and Li., H., 2020, Graphene oxide-loaded SnO2 quantum wires with sub-4 nanometer diameters for low-temperature H2S gas sensing, ACS Appl. Nano Mater., 3 (7), 6385–6393.

[65] Pakdel, H., Borsi, M., Ponzoni, M., and Comini, E., 2024, Enhanced gas sensing performance of CuO-ZnO composite nanostructures for low-concentration NO2 detection, Chemosensors, 12 (4), 54.

[66] Hussain, Z.A., Fakhri, F.H., Alesary, H.F., and Ahmed, L.M., 2020, ZnO based material as photocatalyst for treating the textile anthraquinone ZnO based material as photocatalyst for treating the textile anthraquinone derivative dye (dispersive blue 26 dye): Removal and photocatalytic treatment, J. Phys.: Conf. Ser., 1664 (1), 1–15.

[67] Yu, S., Chen, C. Zhang, H., Zhang, J., and Liu, J., 2021, Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection, Sens. Actuators, B, 332, 129536.

[68] Martínez-Pacheco, C., Cervantes-López, J.L., López-Guemez, A.R., López-Rodríguez, A.S., Sifuentes-Gallardo, P., Díaz-Guillen, J.C., and Díaz-Flores, L.L., 2024, Preparation of ZnO thick films activated with UV-LED for efficient H2S gas sensing, Coatings, 14 (6), 693.

[69] Navale, Y.H., Navale, S.T., Stadler, F.J., Ramgir, N.S., and Patil, V.B., 2019, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors, Ceram. Int., 45 (2, Part A), 1513–1522.

[70] Platonov, V., Rumyantseva, M., Khmelevsky, N., and Gaskov, A., 2020, Electrospun ZnO/Pd nanofibers: CO sensing and humidity effect, Sensors, 20 (24), 7333.

[71] Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X., and Wang, Y., 2020, A review on WO3 based gas sensors: Morphology control and enhanced sensing properties, J. Alloys Compd., 820, 153194.

[72] Nakate, U.T., Singh, V.K., Yu, Y.T., and Park, S., 2021, WO3 nanorods structures for high-performance gas sensing application, Mater. Lett., 299, 130092.

[73] Li, X., Fu, L., Karimi-Maleh, H., Chen, F., and Zhao, S., 2024, Innovations in WO3 gas sensors: Nanostructure engineering, functionalization, and future perspectives, Heliyon, 10 (6), e27740.

[74] Nakate, U.T., Yu, Y.T., and Park, S., 2021, High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods, Sens. Actuators, B, 344, 130264.

[75] Hoa, T.T.N., Le, D.T.T., Van Toan, N., Van Duy, N., Hung, C.M., Van Hieu, N., and Hoa, N.D., 2021, Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires, Mater. Today Commun., 26, 102094.

[76] He, Y., Shi, X., Chen, K., Yang, X., and Chen, J., 2020, Titanium-doped P-type WO3 thin films for liquefied petroleum gas detection, Nanomaterials, 10 (4), 747.

[77] Adilakshmi, G., Reddy, R.S., Reddy, A.S., Reddy, P.S., and Reddy, C.S., 2020, Ag-doped WO3 nanostructure films for organic volatile gas sensor application, J. Mater. Sci.: Mater. Electron., 31 (15), 12158–12168.

[78] Bhat, N., Ukkund, S.J., Ashraf, M., Acharya, K., Ramegouda, N.J., Puthiyillam, P., Hasan, M.A., Islam, S., Koradoor, V.B., Praveen, A.D., and Khan, M.A., 2023, GO/CuO nanohybrid-based carbon dioxide gas sensors with an Arduino detection unit, ACS Omega, 8 (36), 32512–32519.

[79] Xiao, J., Che, Y., Lv, B., Benedicte, M.C., Feng, G., Sun, T., and Song, C., 2021, Synthesis of WO3 nanorods and their excellent ethanol gas-sensing performance, Mater. Res., 24 (3), e20200434.

[80] Onkar, S.G., Nagdeote, S.B., Wadatkar, A.A., and Kharat, P.B., 2020, Gas sensing behavior of ZnO thick film sensor towards H2S, NH3, LPG and CO2, J. Phys.: Conf. Ser., 1644 (1), 012060.

[81] Jiang, L., Tu, S., Xue, K., Yu, H., and Hou, X., 2021, Preparation and gas-sensing performance of GO/SnO2/NiO gas-sensitive composite materials, J. Ceram. Int., 47 (6), 7528–7538.

[82] Ge, W., Jiao, S., Chang, Z., He, X., and Li, Y., 2020, Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets, ACS Appl. Mater. Interfaces, 12 (11), 13200–13207.

[83] Tharsika, T., Thanihaichelvan, M., Haseeb, A.S.M.A., and Akbar, S.A., 2019, Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis, Front. Mater., 6, 00122.

[84] Liu, P., Wang, J., Jin, H., Ge, M., Zhang, F., Wang, C., Sun, Y., and Dai, N., 2023, SnO2 mesoporous nanoparticle-based gas sensor for highly sensitive and low concentration formaldehyde detection, RSC Adv., 13 (4), 2256–2264.

[85] Al-Jumaili, B.E., Rzaij, J.M., and Ibraheam, A.S., 2021, Nanoparticles of CuO thin films for room temperature NO2 gas detection: Annealing time effect, Mater. Today: Proc., 42, 2603–2608.

[86] Shaban, M., Ali, S., and Rabia, M., 2019, Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing, J. Mater. Res. Technol., 8 (5), 4510–4520.

[87] Goel, N., Kunal, K., Kushwaha, A., and Kumar, M., 2022, Metal oxide semiconductors for gas sensing, Eng. Rep., 5 (6), e12604.

[88] Li, S., Zhang, M., and Wang, H., 2021, Simulation of gas sensing mechanism of porous metal oxide semiconductor sensor based on finite element analysis, Sci Rep., 11 (1), 17158.

[89] Potje-Kamloth, K., 2008, Semiconductor junction gas sensors, Chem. Rev., 108 (2), 367–399.

[90] Jung, G., Shin, W., Hong, S., Jeong, Y., Park, J., Kim, D., Bae, J.H., Park, B.G., and Lee, J.H., 2021, Comparison of the characteristics of semiconductor gas sensors with different transducers fabricated on the same substrate, Sens. Actuators, B, 335, 129661.

[91] Isaac, N.A., Pikaar, I., and Biskos, G., 2022, Metal oxide semiconducting nanomaterials for air quality gas sensors: Operating principles, performance, and synthesis techniques, Microchim. Acta, 189 (5), 196.

[92] Ijaz, I., Gilani, E., Nazir, A., and Bukhari, A., 2020, Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, Green Chem. Lett. Rev., 13 (3), 223–245.

[93] Badanayak, P., and Vastrad, J.V., 2021, Sol-gel process for synthesis of nanoparticles and applications thereof, Pharma Innovation, 10 (8), 1023–1027.

[94] Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I.H., Valiev, G.H., and Kianfar, E., 2021, Nanomaterial by sol-gel method: Synthesis and application, Adv. Mater. Sci. Eng., 2021 (1), 5102014.

[95] Latif, W.A., and AL-Owaidi, M.N., 2023, Review article: Sol-gel method, "synthesis and applications", WJAETS, 8 (2), 160–166.

[96] Parashar, M., Shukla, V.K., and Singh, R., 2020, Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications, J. Mater. Sci.: Mater. Electron., 31 (5), 3729–3749.

[97] Shaposhnik, A.V., Shaposhnik, D.A., Turishchev, S.Y., Chuvenkova, O.A., Ryabtsev, S.V., Vasiliev, A.A., Vilanova, X., Hernandez-Ramirez, F., and Morante, J.R., 2019, Gas sensing properties of individual SnO2 nanowires and SnO2 sol-gel nanocomposites, Beilstein J. Nanotechnol., 10, 1380–1390.

[98] Patel, M., Mishra, S., Verma, R., and Shikha, D., 2022, Synthesis of ZnO and CuO nanoparticles via sol gel method and its characterization by using various technique, Discover Mater., 2 (1), 1.

[99] Han, T.H., Bak, S.Y., Kim, S., Lee, S.H., Han, Y.J., and Yi, M., 2021, Decoration of CuO NWs gas sensor with ZnO NPs for improving NO2 sensing characteristics, Sensors, 21 (6), 2103.

[100] Rendón-Angeles, J.C., and Seong, G., 2023, Editorial for the special issue: Hydrothermal synthesis of nanoparticles, Nanomaterials, 13 (9), 1463.

[101] Jalouli, B., Abbasi, A., and Musavi Khoei, S.M., 2019, A comment on: “Conventional and microwave hydrothermal synthesis and application of functional materials: A review”, Materials, 12 (21), 3631.

[102] Hassan, E., Al-saidi, M.H., Rana, J.A., and Thahab, S.M., 2022, Preparation and characterization of ZnO nano-sheets prepared by different depositing methods, Iraqi J. Sci., 63 (2), 538–547.

[103] San, X., Zhang, Y., Zhang, L., Wang, G., Meng, D., Cui, J., and Jin, Q., 2022, One-step hydrothermal synthesis of 3d interconnected rGO/In2O3 heterojunction structures for enhanced acetone detection, Chemosensors, 10 (7), 270.

[104] Sakthivel, B., and Nammalvar, G., 2019, Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite, J. Alloys Compd., 788, 422–428.

[105] Claros, M., Gràcia, I., Figueras, E., and Vallejos, S., 2022, Hydrothermal synthesis and annealing effect on the properties of gas-sensitive copper oxide nanowires, Chemosensors, 10 (9), 353.

[106] Zhang, K., Suh, J.M., Lee, T.H., Cha, J.H., Choi, J.W., Jang, H.W., Varma, R.S., and Shokouhimehr, M., 2019, Copper oxide–graphene oxide nanocomposite: Efficient catalyst for hydrogenation of nitroaromatics in water, Nano Convergence, 6 (1), 6.

[107] Huang, M., Wang, Y., Ying, S., Wu, Z., Liu, W., Chen, D., and Peng, C., 2021, Synthesis of Cu2O-modified reduced graphene oxide for NO2 sensors, Sensors, 21 (6), 1958.

[108] Bai, H., Guo, H., Wang, J., Dong, Y., Liu, B., Xie, Z., Guo, F., Chen, D., Zhang, R., and Zheng, Y., 2021, A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets, Sens. Actuators, B, 337, 129783.

[109] Al-Harbi, N., and Abd-Elrahman, N.K., 2024, Physical methods for preparation of nanomaterials, their characterization and applications: A review, J. Umm Al-Qura Univ. Appl. Sci., 2024, s43994-024-00165-7.

[110] Fazio, E., Gökce, B., De Giacomo, A., Meneghetti, M., Compagnini, G., Tommasini, M., Waag, F., Lucotti, A., Zanchi, C.G., Ossi, P.M., Dell'Aglio, M., D'Urso, L., Condorelli, M., Scardaci, V., Biscaglia, F., Litti, L., Gobbo, M., Gallo, G., Santoro, M., Trusso, S., and Neri, F., 2020, Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications, Nanomaterials, 10 (11), 2317.

[111] Piotto, V., Litti, L., and Meneghetti, M., 2020, Synthesis and shape manipulation of anisotropic gold nanoparticles by laser ablation in solution, J. Phys. Chem. C, 124 (8), 4820–4826.

[112] Bin, K., Kumar, P., Malik, M.A., and Singh, J., 2021, A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures, J. Emergent Mater., 4 (3), 737–754.

[113] Haider, A.J., Alawsi, T., Haider, M.J., Taha, B.A., and Marhoon, H.A., 2022, A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges, Opt. Quantum Electron., 54 (8), 488.

[114] Fadhil, F.A., Sultan, F.I., Haider, A.J., and Rsool, R.A., 2019, Preparation of poison gas sensor from WO3 nanostructure by pulsed laser deposition, J. AIP Conf. Proc., 2190 (1), 020056.

[115] Khudiar, A.I., and Ofui, A.M., 2021, Effect of pulsed laser deposition on the physical properties of ZnO nanocrystalline gas sensors, Opt. Mater., 115, 111010.

[116] Mhadhbi, M., 2021, Modelling of the high-energy ball milling process, Adv. Mater. Phys. Chem., 11 (1), 31–44.

[117] Piras, C.C., Fernández-Prieto, S., and De Borggraeve, W.M., 2019, Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives, J. Nanoscale Adv., 1 (3), 937–947.

[118] El-Eskandarany, M.M., Al-Hazza, A., Al-Hajji, L.A., Ali, N., Al-Duweesh, A.A., Banyan, M., and Al-Ajmi, F., 2021, Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials, Nanomaterials, 11 (10), 2484.

[119] Jamkhande, P.G., Ghule, N.W., Bamer, A.H., and Kalaskar, M.G., 2019, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Delivery Sci. Technol., 53, 101174.

[120] Khatibani, A.B., 2021, Investigation of gas sensing property of zinc oxide thin films deposited by sol-gel method: Effects of molarity and annealing temperature, Indian J. Phys., 95 (2), 243–252.

[121] Zhang, D., Pan, W., Tang, M., Wang, D., Yu, S., Mi, Q., Pan, Q., and Hu, Y., 2023, Diversiform gas sensors based on two-dimensional nanomaterials, Nano Res., 16 (10), 11959–11991.

[122] Sapkota, R., Duan, P., Kumar, T., Venkataraman, A., and Papadopoulos, C., 2021, Thin film gas sensors based on planetary ball-milled zinc oxide nanoinks: effect of milling parameters on sensing performance, Appl. Sci., 11 (20), 9676.

[123] Vajhadin, F., Mazloum‐Ardakani, M., and Amini, A., 2021, Metal oxide‐based gas sensors for the detection of exhaled breath markers, Med. Devices Sens., 4 (1), e10161.

[124] Elwood, M., 2021, The scientific basis for occupational exposure limits for hydrogen sulphide—A critical commentary, Int. J. Environ. Res. Public Health, 18 (6), 2866.

[125] Duc, C., Boukhenane, M.L., Wojkiewicz, J.L., and Redon, N., 2020, Hydrogen sulfide detection by sensors based on conductive polymers: A review, Front. Mater., 7, 00215.

[126] Park, K.R., Cho, H.B., Lee, J., Song, Y., Kim, W.B., and Choa, Y.H., 2020, Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance, Sens. Actuators, B, 302, 127179.

[127] Kim, J.H., Mirzaei, A., Zheng, Y., Lee, J.H., Kim, J.Y., Kim, H.W., and Kim, S.S., 2019, Enhancement of H2S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets, Sens. Actuators, B, 281, 453–461.

[128] Shujah, T., Ikram, M., Butt, A.R., Shahzad, M.K., Rashid, K., Zafar, Q., and Ali, S., 2020, H2S Gas sensor based on WO3 nanostructures synthesized via aerosol assisted chemical vapor deposition technique, Nanosci. Nanotechnol. Lett., 11 (9), 1247–1256.

[129] Zhang, W., Yang, F., Xu, J., Gu, C., and Zhou, K., 2020, Sensitive carbon monoxide gas sensor based on chemiluminescence on Nano-Au/Nd2O3-Ca3Nd2O6: Working condition optimization by response surface methodology, ACS Omega, 5 (32), 20034–20041.

[130] Kinoshita, H., Türkan, H., Vucinic, S., Naqvi, S., Bedair, R., Rezaee, R., and Tsatsakis, A., 2020, Carbon monoxide poisoning, Toxicol. Rep., 7, 169–173.

[131] Sinha, S., Barman, P.B., and Hazra, S.K., 2023, Probing the electronic properties of chemically synthesised doped and undoped graphene derivative, Mater. Sci. Eng., B, 287, 116145.

[132] Hjiri, M., Bahanan, F., Aida, M.S., El Mir, L., and Neri, G., 2020, High performance CO gas sensor based on ZnO nanoparticles, J. Inorg. Organomet. Polym. Mater., 30 (10), 4063–4071.

[133] Basu, A.K., Chauhan, P.S., Awasthi, M., and Bhattacharya, S., 2019, α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature, Appl. Surf. Sci., 465, 56–66.

[134] Molavi, R., and Sheikhi, M.H., 2019, Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications, J. Mater. Sci. Semicond. Process., 106, 104767.

[135] Dhage, S.B., Patil, V.L., Patil, P.S., Ryu, J., Patil, D.R., and Malghe, Y.S., 2021, Synthesis and characterization of CuO-SnO2 nanocomposite for CO gas sensing application, Mater. Lett., 305, 130831.

[136] Abinaya, M., Pal, R., and Sridharan, M., 2019, Highly sensitive room temperature hydrogen sensor based on undoped SnO2 thin films, Solid State Sci., 95, 105928.

[137] Chauhan, P.S., and Bhattacharya, S., 2019, Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review, Int. J. Hydrogen Energy, 44 (47), 26076–26099.

[138] Lu, S., Zhang, Y., Liu, J., Li, H.Y., Hu, Z., Luo, X., Gao, N., Zhang, B., Jiang, J., Zhong, A., Luo, J., and Liu, H., 2021, Sensitive H2 gas sensors based on SnO2 nanowires, Sens. Actuators, B, 345, 130334.

[139] Das, S., Roy, S., and Sarkar, C.K., 2021, Performance improvement of n-ZnO/p-rGO heterojunction based room temperature hydrogen gas sensor, J. IEEE Sens. Lett., 5 (5), 1–4.

[140] Chang, C.H., Chou, T.C., Chen, W.C., Niu, J.S., Lin, K.W., Cheng, S.Y., Tsai, J.H., and Liu, W.C., 2020, Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles, Sens. Actuators, B, 317, 128145.

[141] Zeng, H., Zhang, G., Nagashima, K., Takahashi, T., Hosomi, T., and Yanagida, T., 2021, Metal–oxide nanowire molecular sensors and their promises, Chemosensors, 9 (2), 41.

[142] Bai, H., Guo, H., Feng, C., Wang, J., Liu, B., Xie, Z., Guo, F., Chen, D., Zhang, R., and Zheng, Y., 2022, Highly responsive and selective ppb-level NO2 gas sensor based on porous Pd-functionalized CuO/rGO at room temperature, J. Mater. Chem. C, 10 (10), 3756–3769.

[143] Agrawal, A.V., Kumar, N., and Kumar, M., 2021, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide, Nano-Micro Lett., 13 (1), 38.

[144] Kumar, S., Pavelyev, V., Mishra, P., Tripathi, N., Sharma, P., and Calle, F., 2020, A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors, Mater. Sci. Semicond. Process., 107, 104865.

[145] Tyagi, S., Chaudhary, M., Ambedkar, A.K., Sharma, K., Gautam, Y.K., and Singh, B.P., 2022, Metal oxide nanomaterial-based sensors for monitoring environmental NO2 and its impact on the plant ecosystem: A review, Sens. Diagn., 1 (1), 106–129.

[146] Sivakumar, R., Krishnamoorthi, K., Vadivel, S., and Govindasamy, S., 2021, Progress towards a novel NO2 gas sensor based on SnO2/RGO hybrid sensors by a facial hydrothermal approach, Diamond Relat. Mater., 116, 108418.

[147] Wang, Y., Liu, L., Sun, F., Li, T., Zhang, T., and Qin, S., 2021, Humidity-insensitive NO2 sensors based on SnO2/rGO composites, Front. Chem., 9, 681313.

[148] Petrov, V.V., Ivanishcheva, A.P., Volkova, M.G., Storozhenko, V.Y., Gulyaeva, I.A., Pankov, I.V., Volochaev, V.A., Khubezhov, S.A., and Bayan, E.M., 2022, High gas sensitivity to nitrogen dioxide of nanocomposite ZnO-SnO2 films activated by a surface electric field, Nanomaterials, 12 (12), 2025.

[149] Kazanskiy, N.L., Butt, M.A., and Khonina, S.N., 2021, Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface, Sensors, 21 (2), 378.

[150] Rezk, M.Y., Sharma, J., and Gartia, M.R., 2020, Nanomaterial-based CO2 sensors, Nanomaterials, 10 (11), 2251.

[151] Gerbreders, V., Krasovska, M., Mihailova, I., Kostjukevics, J., Sledevskis, E., Ogurcovs, A., Gerbreders, A., and Bulanovs, A., 2021, Metal oxide nanostructure-based gas sensor for carbon dioxide detection, Latv. J. Phys. Tech. Sci., 58 (5), 15–26.

[152] Lee, M.A., Zaki, S.E., Ertugrul, S., Yilmaz, M., and Eker, Y.R., 2020, Fast response of CO2 room temperature gas sensor based on Mixed-Valence Phases in Molybdenum and Tungsten Oxide nanostructured thin films, Ceram. Int., 46 (7), 9839–9853.

[153] Lee, Z.Y., bin Hawari, H.F., bin Djaswadi, G.W., and Kamarudin, K., 2021, A highly sensitive room temperature CO2 gas sensor based on SnO2-rGO hybrid composite, Materials, 14 (3), 522.

[154] Kohale, A., 2024, Study of CO2 sensing properties of SnO2-CuO thick films, Int. J. Res. Anal. Rev., 11 (1), 74–78.

[155] Kanaparthi, S., and Singh, S.G., 2019, Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection, ACS Appl. Nano Mater., 2 (2), 700–706.

[156] Yu, W., Shen, Z., Peng, F., Lu, Y., Ge, M., Fu, X., Sun, Y., Chen, X., and Dai, N., 2019, Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3−x, RSC Adv., 9 (14), 7723–7728.

[157] Radhakrishnan, J.K., Kumara, M., and Geetika, G., 2021, Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2, Sens. Int., 2, 100059.

[158] Al-Hashem, M., Akbar, S., and Morris, P., 2019, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review, Sens. Actuators, B, 301, 126845.

[159] Raju, P., and Li, Q., 2022, Review—Semiconductor materials and devices for gas sensors, J. Electrochem. Soc., 169 (5), 057518.

[160] Bag, A., and Lee, N.E., 2019, Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review, J. Mater. Chem. C, 7 (43), 13367–13383.

[161] Liu, Y., Xiao, S., and Du, K., 2021, Chemiresistive gas sensors based on hollow heterojunction: A review, Adv. Mater. Interfaces, 8 (12), 2002122.

[162] Barreca, D., Maccato, C., and Gasparotto, A., 2022, Metal oxide nanosystems as chemoresistive gas sensors for chemical warfare agents: A focused review, Adv. Mater. Interfaces, 9 (14), 2102525.

[163] Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P.A., Yang, C., Grundmann, M., Liu, X., and Fu, Y.Q., 2019, Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature, Mater. Horiz., 6 (3), 470–506.

[164] Subha, P.P., and Jayaraj, M.K., 2019, Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction, BMC Chem., 13 (1), 4.

[165] Mathew, M., Shinde, P.V., Samal, R., and Rout, C.S., 2021, A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for gas sensing applications, J. Mater. Sci., 56 (16), 9575–9604.

[166] Zhang, J., Ma, S., Wang, B., and Pei, S., 2021, Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor, J. Alloys Compd., 8861, 61299.

[167] Yang, S., Lei, G., Xu, H., Lan, Z., Wang, Z., and Gu, H., 2021, Metal oxide based heterojunctions for gas sensors: A review, Nanomaterials, 11 (4), 1026.

[168] Gai, L.Y., Lai, R.P., Dong, X.H., Wu, X., Luan, Q.T., Wang, J., Lin, H.F., Ding, W.H., and Wu, G.L., and Xie, W.F., 2022, Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions, Rare Met., 41 (6), 1818–1842.

[169] Du, K., Zhang, L., Shan, H., Dong, S., Shen, X., and Li, G., 2024, Synthesis of ZnO nanorods loaded with SnO2 cubes and the mechanism of improved ethanol sensing performance with DFT calculation, Mater. Sci. Semicond. Process., 178, 108429.

[170] Xue, D., Wang, J., Wang, Y., Sun, G., Cao, J., Bala, H., and Zhang, Z., 2019, Enhanced methane sensing properties of WO3 nanosheets with dominant exposed (200) facet via loading of SnO2 nanoparticles, Nanomaterials, 9 (3), 351.

[171] Yang, B., Myung, N.V., and Tran, T.T., 2021, 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review, Adv. Electron. Mater., 7 (9), 2100271.

[172] Hashemi Karouei, S.F., and Milani Moghaddam, H., 2019, p-p Heterojunction of polymer/hierarchical mesoporous LaFeO3 microsphere as CO2 gas sensing under high humidity, Appl. Surf. Sci., 479, 1029–1038.

[173] Sarode, H.A., Barai, D.P., Bhanvase, B.A., Ugwekar, R.P., and Saharan, V., 2020, Investigation on preparation of graphene oxide-CuO nanocomposite based nanofluids with the aid of ultrasound assisted method for intensified heat transfer properties, Mater. Chem. Phys., 251, 123102.

[174] Gou, X., Wang, G., Yang, J., Park, J., and Wexler, D., 2008, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons, J. Mater. Chem., 18 (9), 965–969.

[175] Yin, L., Wang, H., Li, L., Li, H., Chen, D., and Zhang, R., 2019, Microwave-assisted preparation of hierarchical CuO@rGO nanostructures and their enhanced low-temperature H2S-sensing performance, Appl. Surf. Sci., 476, 107–114.

[176] Liu, Y., Ma, H., Han, X.X., and Zhao, B., 2021, Metal-semiconductor heterostructures for surface-enhanced Raman scattering: Synergistic contribution of plasmons and charge transfer, Mater. Horiz., 8 (2), 370–382.

[177] Yu, X., and Sivula, K., 2017, Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion, Curr. Opin. Electrochem., 2 (1), 97–103.

[178] Kushwaha, A., Kumar, R., and Goel, N., 2024, Chemiresistive gas sensors beyond metal oxides: Using ultrathin two-dimensional nanomaterials, FlatChem, 43, 100584.

[179] Shao, G., Xu, Y., and Liu, S., 2019, Controllable preparation of 2D metal-semiconductor layered metal dichalcogenides heterostructures, Sci. China: Chem., 62 (3), 295–298.

[180] Kumar, R., Liu, X., Zhang, J., and Kumar, M., 2020, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials, Nano-Micro Lett., 12 (1), 164.

[181] Sabry, R.S., Agool, I.R., and Abbas, A.M., 2019, Hydrothermal synthesis of In2O3:Ag nanostructures for NO2 gas sensor, Silicon, 11 (5), 2475–2478.

[182] Karthik, T.V.K., Olvera, M.D.L., Maldonado, A., and Gómez Pozos, H., 2016, CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: A study of cu-induced modifications, Sensors, 16 (8), 1283.



DOI: https://doi.org/10.22146/ijc.95018

Article Metrics

Abstract views : 99 | views : 46


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.