Isolation and Evaluation of the Antioxidant Capacity of Compounds from Ehretia asperula Zoll. & Moritzi

https://doi.org/10.22146/ijc.94762

Chong Kim Thien Duc(1), Tran Chi Linh(2), Nguyen Quoc Chau Thanh(3), Pham Quoc Nhien(4), Dai Thi Xuan Trang(5), Luu Thai Danh(6), Nguyen Trong Tuan(7*)

(1) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(2) Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(3) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(4) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(5) Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(6) Department of Agriculture Genetics and Breeding, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(7) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(*) Corresponding Author

Abstract


Ehretia asperula Zoll. & Moritzi was a common medicinal herb found in several Asian nations. This herb was found in many provinces in northern Vietnam, especially Hoa Binh province. Leaves of E. asperula cultivated in Tay Ninh Province were used to isolate compounds and evaluate their potential as antioxidants by five methods, including TAC, RP, FRAP, DPPH, and ABTS•+. Seven compounds were isolated and elucidated from the ethyl acetate fraction, including kaempferol (1), astragalin (2), nicotiflorin (3), rutin (4), caffeic acid (5), (-)-loliolide (6), and daucosterol (7), where compounds 1, 4, 6, and 7 were found from this species for the first time. All isolated compounds from E. asperula leaves exhibited antioxidant activity, consisting of 5.70 ± 0.01 to 299.13 ± 10.19 μg/mL for EC50 values. Especially compound 5 had a very strong antioxidant effect based on five methods TAC (EC50 = 8.43 ± 0.15 μg/mL), RP (EC50 = 6.79 ± 003 μg/mL), FRAP (EC50 = 12.72 ± 006 μg/mL), DPPH (EC50 = 5.57 ± 0.02 µg/mL), and ABTS•+ (EC50 = 5.70 ± 0.01 μg/mL). From our results, Tay Ninh Province's E. asperula leaves are abundant in naturally occurring antioxidants, indicating their potential use as therapeutic materials.


Keywords


antioxidant; Ehretia asperula; kaempferol; (-)-loliolide; rutin



References

[1] Islam, M.Z., Hossain, M.T., Hossen, F., Mukharjee, S.K., Sultana, N., and Paul, S.C., 2018, Evaluation of antioxidant and antibacterial activities of Crotalaria pallida stem extract, Clin. Phytosci., 4 (1), 8.

[2] Yevutsey, S.K., Buabeng, K.O., Aikins, M., Anto, B.P., Biritwum, R.P., Frimodt-Møller, N., and Gyansa-Lutterodt, M., 2017, Situational analysis of antibiotic use and resistance in Ghana: Policy and regulation, BMC Public Health, 17 (1), 896.

[3] Harvey, A.L., Edrada‑Ebel, R., and Quinn, R.J., 2015, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discovery, 14 (2), 111–129.

[4] Tram, P.T.M., Suong, N.K., and Tien, L.T.T., 2021, Effects of plant growth regulators and sugars on Ehretia asperula Zoll. et Mor. cell cultures, Indian J. Agric. Res., 55 (4), 410–415.

[5] Tram, P.T.M., Suong, N.K., and Tien, L.T.T., 2022, Rosmarinic acid production of Ehretia asperula Zollinger and Moritzi cell suspension cultures: Effects of cell aggregate size, glucose, and chitosan, Aust. J. Crop Sci., 16 (3), 402–407.

[6] Sari, A.P., and Supratman, U., 2022, Phytochemistry and biological activities of Curcuma aeruginosa (Roxb.), Indones. J. Chem., 22 (2), 576–598.

[7] Kim, D.D., Nguyet, V.T., Anh, H.X., Trang, N.T.T., Chuyen, N.H., Huong, L.M., Ha, T.T.H., Ho, D.H., and Dat, N.T., 2019, Cytotoxic phenolic constituents from the leaves of Ehretia asperula, Bangladesh J. Pharmacol., 14 (4), 196–197.

[8] Le, T.T., Kang, T.K., Do, H.T., Nghiem, T.D., Lee, W.B., and Jung, S.H., 2021, Protection against oxidative stress-induced retinal cell death by compounds isolated from Ehretia asperula, Nat. Prod. Commun., 16 (12), 1934578X211067986.

[9] Nasir, B., Baig, M.W., Majid, M., Ali, S.M., Khan, M.Z.I., Kazmi, S.T.B., and Haq, I., 2020, Preclinical anticancer studies on the ethyl acetate leaf extracts of Datura stramonium and Datura inoxia, BMC Complementary Med. Ther., 20 (1), 188.

[10] Fatima, H., Khan, K., Zia, M., Ur-Rehman, T., Mirza, B., and Haq, I., 2015, Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: An in vitro biological and phytochemical investigation, BMC Complementary Altern. Med., 15 (1), 376.

[11] Song, D., Zhang, S., Chen, A., Song, Z., and Shi, S., 2024, Comparison of the effects of chlorogenic acid isomers and their compounds on alleviating oxidative stress injury in broilers, Poult. Sci., 103 (6), 103649.

[12] Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., and Chang, C.M., 2022, Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa, Molecules, 27 (4), 1326.

[13] Hussen, E.M., and Endalew, S.A., 2023, In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina, BMC Complementary Med. Ther., 23 (1), 146.

[14] Nguyen, T.V., and Dinh, V., 2020, Isolation of kaempferol from Vietnamese Ginkgo biloba leaves by preparative column chromatography, Asian J. Chem., 32 (3), 515–518.

[15] Abdelkader, M.S.A., Abdelhamid, R.A., Abouelela, M.E., Rateb, M.E., and Ahmed, M.H., 2021, Isolation of phenolic constituents from Rhododendron yunnanense flowers as a potent cyclooxygenase-2 and vascular endothelial growth factor receptor-2 inhibitor: Phytochemical and molecular simulation studies, J. Appl. Pharm. Sci., 11 (11), 87–94.

[16] Osw, S.P., and Hussain, F.H.S., 2020, Isolation of kaempferol 3-O-rutinoside from Kurdish plant Anchusa italica Retz. and bioactivity of some extracts, Eurasian J. Sci. Eng., 6 (2), 141–156.

[17] Abdullahi, S.M., Musa, A.M., Sani, Y.M., Abdullahi, M.I., and Magaji, M.G., 2019, Isolation of rutin from the leaf of Ziziphus mucronata Wild. (Rhamnaceae), Bayero J. Pure Appl. Sci., 12 (1), 573–576.

[18] El-Din, M.I.G., Eldahshan, O.A., Abdel-Naim, A.B., Singab, A.N.B., and Ayoub, N.A., 2014, Cytotoxicity of Enterolobium timbouva plant extract and its isolated pure compounds, J. Pharm. Res. Int., 4 (7), 826–836.

[19] Kim, H.S., Fernando, I.P.S., Lee, S.H., Ko, S.C., Kang, M.C., Anh, G., Je, J.G., Sanjeewa, K.K.A., Rho, J.R., Shin, H.J., Lee, W.W., Lee, D.S., and Jeon, Y.J., 2021, Isolation and characterization of anti-inflammatory compounds from Sargassum horneri via high-performance centrifugal partition chromatography and high-performance liquid chromatography, Algal Res., 54, 102209.

[20] Peshin, T., and Kar, H.K., 2017, Isolation and characterization of β-sitosterol-3-O-β-D-glucoside from the extract of the flowers of Viola odorata, J. Pharm. Res. Int., 16 (4), 1–8.

[21] Wahyuningsih, S.P.A., Savira, N.I.I., Anggraini, D.W., Winarni, D., Suhargo, L., Kusuma, B.W.A., Nindyasari, F., Setianingsih, N., and Mwendolwa, A.A., 2020, Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice, Scientifica, 2020, 4237205.

[22] Sharma, A., and Chandra, N., 2017, Isolation and antioxidant activity of caffeic acid from roots of Bryophyllum pinnatum (Lam.) Kurz, Asian J. Chem., 29 (2), 267–270.

[23] Chiou, S.Y., Sung, J.M., Huang, P.W., and Lin, S.D., 2017, Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models, J. Med. Food, 20 (2), 171–179.

[24] Girsang, E., Lister, I.N.E., Ginting, C.N., Sholihah, I.A., Raif, M.A., Kunardi, S., Million, H., and Widowati, W., 2020, Antioxidant and antiaging activity of rutin and caffeic acid, Pharmaciana, 10 (2), 147–156.

[25] Bovilla, V.R., Anantharaju, P.G., Dornadula, S., Veeresh, P.M., Kuruburu, M.G., Bettada, V.G., Ramkumar, K.M., and Madhunapantula, R.V., 2021, Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice, Asian Pac. J. Trop. Biomed., 11 (6), 244–253.

[26] Izadyar, M., and Kheirabadi, R., 2016, A theoretical study on the structure-radical scavenging activity of some hydroxyphenols, Phys. Chem. Res., 4 (1), 73–82.

[27] Spiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., Żbikowska, B., Hill, G.A., and Sroka, Z., 2020, Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features, Molecules, 25 (13), 3088.

[28] Thong, N.M., Duong, T., Pham, L.T., and Nam, P.C., 2014, Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method, Chem. Phys. Lett., 613, 139–145.

[29] Sarian, M.N., Ahmed, Q.U., Mat So’ad, S.Z., Alhassan, A.M., Murugesu, S., Perumal, V., Syed Mohamad, S.N.A., Khatib, A., and Latip, J., 2017, Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study, BioMed Res. Int., 2017, 8386065.

[30] Wang, T., Li, Q., and Bi, K., 2018, Bioactive flavonoids in medicinal plants: Structure, activity and biological fate, Asian J. Pharm. Sci., 13 (1), 12–23.

[31] Vo, Q.V., Nam, P.C., Thong, N.M., Trung, N.T., Phan, C.T.D., and Mechler, A., 2019, Antioxidant motifs in flavonoids: O−H versus C−H Bond, ACS Omega, 4 (5), 8935–8942.

[32] Rusmana, D., Wahyudianingsih, R., Elisabeth, M., Balqis, B., Maesaroh, M., and Widowati, W., 2017, Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin, Indones. Biomed. J., 9 (2), 84–90.

[33] Tian, C., Guo, Y., Chang, Y., Zhao, J., Cui, C., and Liu, M., 2019, Dose-effect relationship on anti-inflammatory activity on LPS induced RAW 264.7 cells and antioxidant activity of rutin in vitro, Acta Pol. Pharm., 76 (3), 511–522.

[34] Jo, Y.J., Yoo, D.H., Lee, I.C., Lee, J., and Jeong, H.S., 2022, Antioxidant and skin whitening activities of sub- and super-Critical water treated rutin, Molecules, 27 (17), 5441.

[35] Han, H., Bai, X., Zhang, N., Zhao, D., Wei, K., Zhang, C., and Li, M., 2016, Activities constituents from Yaowang tea (Potentilla glabra Lodd.), Food Sci. Technol. Res., 22 (3), 371–376.

[36] Dar, R.A., Brahman, P.K., Khurana, N., Wagay, J.A., Lone, Z.A., Ganaie, M.A., and Pitre, K.S., 2017, Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays, Arabian J. Chem., 10, S1119–S1128.

[37] Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., and Xiao, W., 2018, Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol, PLoS One, 13 (5), e0197563.

[38] Yi, J., Wu, J.G., Wu, Y.B., and Peng, W., 2016, Antioxidant and anti-proliferative activities of flavonoids from Bidens pilosa L. var. radiata Sch Bip, Trop. J. Pharm. Res., 15 (2), 341–348.

[39] Li, X., Tian, Y., Wang, T., Lin, Q., Feng, X., Jiang, Q., Liu, Y., and Chen, D., 2017, Role of the p-coumaroyl moiety in the antioxidant and cytoprotective effects of flavonoid glycosides: Comparison of astragalin and tiliroside, Molecules, 22 (7), 1165.

[40] Han, S., Hanh Nguyen, T.T., Hur, J., Kim, N.M., Kim, S.B., Hwang, K.H., Moon, Y.H., Kang, C., Chung, B., Kim, Y.M., Kim, T.S., Park, J.S., and Kim, D., 2017, Synthesis and characterization of novel astragalin galactosides using β-galactosidase from Bacillus circulans, Enzyme Microb. Technol., 103, 59–67.

[41] Dong, W., Chen, D., Chen, Z., Sun, H., and Xu, Z., 2021, Antioxidant capacity differences between the major flavonoids in cherry (Prunus pseudocerasus) in vitro and in vivo models, LWT, 141, 110938.

[42] Wang, Y., Chen, P., Tang, C., Wang, Y., Li, Y., and Zhang, H., 2014, Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L, J. Ethnopharmacol., 151 (2), 944–950.

[43] Zhu, H., Chen, L., Yu, J., Cui, L., Ali, I., Song, X., Park, J.H., Wang, D., and Wang, X., 2020, Flavonoid epimers from custard apple leaves, a rapid screening and separation by HSCCC and their antioxidant and hypoglycaemic activities evaluation, Sci. Rep., 10 (1), 8819.

[44] Novaes, P., Torres, P.B., Cornu, T.A., Lopes, J.C., Ferreira, M.J.P., and dos Santos, D.Y.A.C., 2019, Comparing antioxidant activities of flavonols from Annona coriacea by four approaches, S. Afr. J. Bot., 123, 253–258.

[45] Swilam, N., Nawwar, M.A.M., Radwan, R.A., and Mostafa, E.S., 2022, Antidiabetic activity and in silico molecular docking of polyphenols from Ammannia baccifera L. subsp. Aegyptiaca (Willd.) Koehne waste: Structure elucidation of undescribed acylated flavonol diglucoside, Plants, 11 (3), 452.

[46] El Omari, N., Jaouadi, I., Lahyaoui, M., Benali, T., Taha, D., Bakrim, S., El Menyiy, N., El Kamari, F., Zengin, G., Bangar, S.P., Lorenzo, J.M., Gallo, M., Montesano, D., and Bouyahya, A., 2022, Natural sources, pharmacological properties, and health benefits of daucosterol: Versatility of actions, Appl. Sci., 12 (12), 5779.

[47] Chaouche, M., Demirtaş, İ., Koldaş, S., Tüfekçi, A.R., Gül, F., Özen, T., Wafa, N., Boureghda, A., and Bora, N., 2021, Phytochemical study and antioxidant activities of the water-soluble aerial parts and isolated compounds of Thymus munbyanus subsp. ciliatus (Desf.) Greuter & Burdet, Turk. J. Pharm. Sci., 18 (4), 430–437.

[48] Madeleine, D.T., Noël, N.J., de Theodore, A.A., Abdoulaye, H., Emmanuel, T., Laurent, S., Henoumont, C., Leonel, D.T.C., and Tanyi, J.M., 2020, Antioxidant activity and chemical constituents from stem bark of Ficus abutilifolia. Miq (Moraceae), Eur. J. Med. Plants, 31 (13), 48–59.

[49] Silva, J., Alves, C., Martins, A., Susano, P., Simões, M., Guedes, M., Rehfeldt, S., Pinteus, S., Gaspar, H., Rodrigues, A., Goettert, M.I., Alfonso, A., and Pedrosa, R., 2021, Loliolide, a new therapeutic option for neurological diseases? In vitro neuroprotective and anti-Inflammatory activities of a monoterpenoid lactone isolated from Codium tomentosum, Int. J. Mol. Sci., 22 (4), 1888.



DOI: https://doi.org/10.22146/ijc.94762

Article Metrics

Abstract views : 2334 | views : 842 | views : 560


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.