The Effect of SiO2 Addition to the Hydroxyapatite/Curcumin Composite Properties

https://doi.org/10.22146/ijc.93802

Tri Windarti(1*), Nor Basid Adiwibawa Prasetya(2), Ngadiwiyana Ngadiwiyana(3)

(1) Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Hydroxyapatite/curcumin composites have been studied as a calcium phosphate cement candidate. In this research, the effects of adding SiO2 to the hydroxyapatite/curcumin composite on the characteristics of the cement, such as the crystal and surface properties, as well as the release behavior of curcumin in Ringer's solution media, were studied. The composite preparation with and without SiO2 was carried out using a Na2HPO4 2.5% solution. The results showed that the addition of 25% SiO2 to the hydroxyapatite/curcumin composite did not change the crystal properties of hydroxyapatite but produced a more homogenous distribution of the ingredients. The behavior of the composite in Ringer's solution also changes, which is proven by the change in the crystal growth direction and Ca/P ratio. Adding SiO2 produced a composite with a platter and larger particles, as well as a higher Ca/P ratio on the surface. The presence of SiO2 inhibited the release of curcumin in which the ratio of HA: curcumin changed from 77.7%:22.3% to 69.6%:30.4% after 5 d of immersion in Ringer's solution. Thus, besides increasing calcium phosphate deposition on the cement surface, SiO2 also prevents curcumin from being released from the composite.

Keywords


hydroxyapatite; curcumin; SiO2; calcium phosphate cement

Full Text:

Full Text PDF


References

[1] Langdahl, B., 2020, Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: Combined and sequential approaches, Bone, 139, 115516.

[2] Deng, Y., Wei, W., and Tang, P., 2022, Applications of calcium-based nanomaterials in osteoporosis treatment, ACS Biomater. Sci. Eng., 8 (2), 424–443.

[3] Wu, T., Sun, J., Tan, L., Yan, Q., Li, L., Chen, L., Liu, X., and Bin, S., 2020, Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system, Bioact. Mater., 5 (2), 348–357.

[4] Zhao, Y., Li, Z., Jiang, Y., Liu, H., Feng, Y., Wang, Z., Liu, H., Wang, J., Yang, B., and Lin, Q., 2020, Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis, Acta Biomater., 113, 614–626.

[5] Rasool, N., Negi, D., and Singh, Y., 2023, Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis, ACS Biomater. Sci. Eng., 9 (6), 3535–3545.

[6] Abdollahi, M., Larijani, L., Rahimi, R., and Salari, O., 2005, Role of oxidative stress in osteoporosis, Therapy, 2 (5), 787–796.

[7] Markovic, Z., and Trajkovic, V., 2008, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60), Biomaterials, 29 (26), 3561–3573.

[8] Pandey, A., Midha, S., Sharma, R.K., Maurya, R., Nigam, V.K., Ghosh, S., and Balani, K., 2018, Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications, Mater. Sci. Eng., C, 88, 13–24.

[9] Stevanović, M., Đošić, M., Janković, A., Kojić, V., Vukašinović-Sekulić, M., Stojanović, J., Odović, J., Crevar Sakač, M., Rhee, K.Y., and Mišković-Stanković, V., 2018, Gentamicin-loaded bioactive hydroxyapatite/chitosan composite coating electrodeposited on titanium, ACS Biomater. Sci. Eng., 4 (12), 3994–4007.

[10] Sistanipour, E., Meshkini, A., and Oveisi, H., 2018, Catechin-conjugated mesoporous hydroxyapatite nanoparticle: A novel nano-antioxidant with enhanced osteogenic property, Colloids Surf., B, 169, 329–339.

[11] Forte, L., Torricelli, P., Boanini, E., Gazzano, M., Rubini, K., Fini, M., and Bigi, A., 2016, Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study, Acta Biomater., 32, 298–308.

[12] Eren, T., Baysal, G., and Doğan, F., 2020, Biocidal activity of bone cements containing curcumin and pegylated quaternary polyethylenimine, J. Polym. Environ., 28 (9), 2469–2480.

[13] Marino, V., Battaglini, M., Moles, N., and Ciofani, G., 2022, Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases, ACS Omega, 7 (30), 25974–25990.

[14] Perera, K.D.C., Weragoda, G.K., Haputhanthri, R., and Rodrigo, S.K., 2021, Study of concentration dependent curcumin interaction with serum biomolecules using ATR-FTIR spectroscopy combined with Principal Component Analysis (PCA) and Partial Least Square Regression (PLS-R), Vib. Spectrosc., 116, 103288.

[15] Pérez-Lozano, M.L., Cesaro, A., Mazor, M., Esteve, E., Berteina-Raboin, S., Best, T.M., Lespessailles, E., and Toumi, H., 2021, Emerging natural-product-based treatments for the management of osteoarthritis, Antioxidants, 10 (2), 265.

[16] Cheng, D., Li, W., Wang, L., Lin, T., Poiani, G., Wassef, A., Hudlikar, R., Ondar, P., Brunetti, L., and Kong, A.N., 2019, Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers, Mol. Pharmaceutics, 16 (5), 1881–1889.

[17] Sebastiammal, S., Lesly Fathima, A.S., Devanesan, S., AlSalhi, M.S., Henry, J., Govindarajan, M., and Vaseeharan, B., 2020, Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: A perspective of nano-based drug delivery, J. Drug Delivery Sci. Technol., 57, 101752.

[18] Hani, U., Jaswanth Gowda, B.H., Siddiqua, A., Wahab, S., Begum, M.Y., Sathishbabu, P., Usmani, S., and Ahmad, P.M., 2023, Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems, J. Mol. Liq., 390, 123037.

[19] Marinho, J.P.N., Neme, N.P., Matos, M.J.S., Batista, R.J.C., Macedo, W.A.A. Gastelois, P.L., Gomes, D.A., Rodrigues, M.A., Cipreste, M.F., and Sousa, E.M.B., 2023, Nanostructured system based on hydroxyapatite and curcumin: A promising candidate for osteosarcoma therapy, Ceram. Int., 49 (12), 19932–19949.

[20] Dhatchayani, S., Vijayakumar, S., Sarala, N., Vaseeharan, B., and Sankaranarayanan, K., 2020, Effect of curcumin sorbed selenite substituted hydroxyapatite on osteosarcoma cells: An in vitro study, J. Drug Delivery Sci. Technol., 60, 101963.

[21] Ferrairo, B.M., Mosquim, V., de Azevedo-Silva, L.J., Pires, L.A., Padovini, D.S.S., Magdalena, A.G., Fortulan, C.A., Lisboa-Filho, P.N., Rubo, J.H., and Borges, A.F.S., 2023, Experimental silica-based bioceramic composite added with nano-sized bovine hydroxyapatite: Synthesis and characterization, Silicon, 15 (16), 7171–7181.

[22] Liu, F., Jiang, X., Zhang, Q., and Zhu, M., 2014, Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles, Compos. Sci. Technol., 101, 86–93.

[23] Shahgholi, M., Firouzi, P., Malekahmadi, O., Vakili, S., Karimipour, A., Ghashang, M., Hussain, W., Kareem, H.A., and Baghaei, S., 2022, Fabrication and characterization of nanocrystalline hydroxyapatite reinforced with silica-magnetite nanoparticles with proper thermal conductivity, Mater. Chem. Phys., 289, 126439.

[24] Yuan, X., Xu, Y., Lu, T., He, F., Zhang, L., He, Q., and Ye, J., 2022, Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol, J. Mech. Behav. Biomed. Mater., 128, 105104.

[25] Sidane, D., Khireddine, H., Bir, F., Yala, S., Montagne, A., and Chicot, D., 2017, Hydroxyapatite-TiO2-SiO2-coated 316L stainless steel for biomedical application, Metall. Mater. Trans. A, 48 (7), 3570–3582.

[26] Evcin, A., and Bohur, B.G., 2019, Coating of different silica sources containing hydroxyapatite for Ti6Al4V metal substrate using HVOF technique, Arabian J. Geosci., 12 (6), 220.

[27] Mahalingam, V., Sivaraju, M., and Shanmugasundaram, P., 2023, Synthesis of silica/hydroxyapatite nanocomposites using rice husk and fish scale for corrosion protection application, Silicon, 15 (13), 5603–5613.

[28] Albert, K., Huang, X.C., and Hsu, H.Y., 2017, Bio-templated silica composites for next-generation biomedical applications, Adv. Colloid Interface Sci., 249, 272–289.

[29] Lenji, R.K., Nourbakhsh, A.A., Nourbakhsh, N., Nourbakhsh, M., and Mackenzie, K.J.D., 2017, Phase formation, microstructure and setting time of MCM-48 mesoporous silica nanocomposites with hydroxyapatite for dental applications: Effect of the Ca/P ratio, Ceram. Int., 43 (15), 12857–12862.

[30] Pajchel, L., and Kolodziejski, W., 2018, Synthesis and characterization of MCM-48/hydroxyapatite composites for drug delivery: Ibuprofen incorporation, location and release studies, Mater. Sci. Eng., C, 91, 734–742.

[31] dos Apostolos, R.C.R., Cipreste, M.F., de Sousa, R.G., and de Sousa, E.M.B., 2020, Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications, J. Nanoparticle Res., 22 (12), 368.

[32] Windarti, T., Prasetya, N.B.A., Ngadiwiyana, N., and Nulandaya, L., 2023, Calcium phosphate cement composed of hydroxyapatite modified silica and polyeugenol as a bone filler material, Indones. J. Chem., 23 (2), 499–509.

[33] Biglar, N., Chaychi Raghimi, E., Sadighian, S., Karamitanha, F., Zajkani, E., and Nourian, A., 2023, Effect of incorporating silica-hydroxyapatite-silver hybrid nanoparticles into the resin-modified glass ionomer on the adhesive remnant index score and shear bond strength of orthodontic metal brackets: An in vitro study, Int. Orthod., 21 (3), 100761.

[34] Sumathra, M., Munusamy, M.A., Alarfaj, A.A., and Rajan, M., 2018, Osteoblast response to Vitamin D3 loaded cellulose enriched hydroxyapatite Mesoporous silica nanoparticles composite, Biomed. Pharmacother., 103, 858–868.

[35] Reis, D.P., Filho, J.D.N., Rossi, A.L., de Almeida Neves, A., Portela, M.B., and da Silva, E.M., 2019, Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF), J. Dent., 90, 103211.

[36] Kuang, Z., Dai, G., Wan, R., Zhang, D., Zhao, C., Chen, C., Li, J., Gu, H., and Huang, W., 2021, Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold, Genes Dis., 8 (2),193–202.

[37] Wakily, H., Dabbagh, A., Abdullah, H., Abdul Halim, N.F., and Abu Kasim, N.H., 2015, Improved thermal and mechanical properties in hydroxyapatite-titanium composites by incorporating silica-coated titanium, Mater. Lett., 143, 322–325.

[38] Ab Rahman, I., Ghazali, N.A.M. Wan Bakar, W.Z., and Masudi, S.M., 2017, Modification of glass ionomer cement by incorporating nanozirconia-hydroxyapatite-silica nano-powder composite by the one-pot technique for hardness and aesthetics improvement, Ceram. Int., 43 (16), 13247–13253.

[39] Windarti, T., Nulandaya, L., Widjijono, W., and Nuryono, N., 2023, Synthesis and characterization of biphasic calcium phosphate substituted cerium as a potential osteoporotic bone filler, Period. Polytech., Chem. Eng., 67 (2), 242–255.

[40] Palanisamy, G., Lee, J.H., and Lee, J., 2023, Curcumin-loaded hydroxyapatite nanoparticles for enriched removal of organic pollutants and inhibition of dual-species biofilm formation, Environ. Technol. Innovation, 32, 103364.

[41] Lee, W.H., Rohanizadeh, R., and Loo, C.Y., 2021, In situ functionalizing calcium phosphate biomaterials with curcumin for the prevention of bacterial biofilm infections, Colloids Surf., B, 206, 111938.

[42] de Deus, W.F., de França, B.M., Forero, J.S.B., Granato, A.E.C., Ulrich, H., Dória, A.C.O.C., Amaral, M.M., Slabon, A., and Rodrigues, B.V.M., 2021, Curcuminoid-tailored interfacial free energy of hydrophobic fibers for enhanced biological properties, ACS Appl. Mater. Interfaces, 13 (21), 24493–24504.

[43] Windarti, T., Widjijono, W., and Nuryono, N., 2021, Deposition of hydroxyapatite on silica made from rice husk ash to produce powder component of calcium phosphate cement, Indones. J. Chem., 21 (3), 588–597.

[44] Sayed, M., Mahmoud, E.M., Saber, S.M., Raafat, S.N., Gomaa, S.M., and Naga, S.M., 2023, Effect of the injectable alginate/nano-hydroxyapatite and the silica/nano-hydroxyapatite composites on the stem cells: a comparative study, J. Non-Cryst. Solids, 610, 122327.

[45] Truite, C.V.R., Noronha, J.N.G., Prado, G.C., Santos, L.N., Palácios, R.S., Do Nascimento, A., Volnistem, E.A., da Silva Crozatti, T.T., Francisco, C.P., Sato, F., Weinand, W.R., Hernandes, L., and Matioli, G., 2022, Bioperformance studies of biphasic calcium phosphate scaffolds extracted from fish bones impregnated with free curcumin and complexed with β-cyclodextrin in bone regeneration, Biomolecules, 12 (3), 383.

[46] Shah, F.A., 2020, Characterization of synthetic hydroxyapatite fibers using high-resolution, polarized Raman spectroscopy, Appl. Spectrosc., 75 (4), 475–479.

[47] Ramesh, G., Kaviyil, J.E., Paul, W., Sasi, R., and Joseph, R., 2022, Gallium-curcumin nanoparticle conjugates as an antibacterial agent against Pseudomonas aeruginosa: Synthesis and characterization, ACS Omega, 7 (8), 6795–6809.

[48] Sobeh, E.I., El-ghannam, G., Korany, R.M.S., Saleh, H.M., and Elfeky, S.A., 2022, Curcumin-loaded hydroxyapatite nanocomposite as a novel biocompatible shield for male Wistar rats from γ-irradiation hazard, Chem.-Biol. Interact., 370, 110328.

[49] Yang, J., Chen, X., Wen, H., Chen, Y., Yu, Q., Shen, M., and Xie, J., 2022, Curcumin-loaded pH-sensitive biopolymer hydrogels: fabrication, characterization, and release properties, ACS Food Sci. Technol., 2 (3), 512–520.

[50] Van Nong, H., Hung, L.X., Thang, P.N., Chinh, V.D., Vu, L.V., Dung, P.T., Van Trung, T., and Nga, P.T., 2016, Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam, SpringerPlus, 5, 1147.



DOI: https://doi.org/10.22146/ijc.93802

Article Metrics

Abstract views : 2274 | views : 764


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.