Strong Anisotropic Rashba Effect with Tunable Spin-Splitting in Two-Dimensional Janus Vanadium Dichalcogenides Monolayer

https://doi.org/10.22146/ijc.93543

Yusuf Affandi(1*), Moh. Adhib Ulil Absor(2), Muhammad Anshory(3), Wardah Amalia(4)

(1) Instrumentation and Automation Engineering, Faculty of Industrial Technology, Institut Teknologi Sumatera, Way Hui, Lampung Selatan 35365, Indonesia
(2) Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(3) Department of Physics, Faculty of Science, Institut Teknologi Sumatera, Way Hui, Lampung Selatan 35365, Indonesia
(4) Graduate School of Physics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Motivated by the recent discovery of the Rashba effect in two-dimensional (2D) Janus Transition Metal Dichalcogenides (TMDs) systems, we explore the Rashba effect on the Janus VXY (X = S, Se, Y = Se, Te) monolayer. By employing first-principles density functional theory (DFT) calculations, we find a strong anisotropic Rashba splitting observed around Γ points in the first Brillouin zone. We analyze this anisotropy of Rashba splitting by using k·p perturbation theory synergized with group symmetry analysis. By giving the effect of the biaxial strain, we manipulate the characteristics of the Rashba splitting on the Janus Vanadium Dichalcogenides system. Through spin texture analysis, we reveal both the in-plane and out-of-plane components of the spin textures, providing further evidence for the anisotropic nature of the Rashba spin-orbit coupling (SOC). The observed tuneable Rashba splitting by applying the strain effect shows that the Janus Vanadium dichalcogenides system has the potential to be used as a semiconductor material for spintronic devices.

Keywords


Rashba splitting; density functional theory; strain effect; vanadium dichalcogenides

Full Text:

Full Text PDF


References

[1] Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., and Jungwirth, T., 2015, Spin hall effects, Rev. Mod. Phys., 87 (4), 1213–1260.

[2] Bandurin, D.A., Tyurnina, A.V., Yu, G.L., Mishchenko, A., Zólyomi, V., Morozov, S.V., Kumar, R.K., Gorbachev, R.V., Kudrynskyi, Z.R., Pezzini, S., Kovalyuk, Z.D., Zeitler, U., Novoselov, K.S., Patenè, A., Eaves, L., Grigorieva, I.V., Fal’ko, V.I., Geim, A.K., and Cao, Y., 2017, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotechnol., 12 (3), 223–227.

[3] Wang, T., Miao, S., Li, Z., Meng, Y., Lu, Z., Lian, Z., Blei, M., Taniguchi, T., Watanabe, K., Tongay, S., Smirnov, D., and Shi, S.F., 2020, Giant valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure, Nano Lett., 20 (1), 694–700.

[4] Seibold, G., Caprara, S., Grilli, M., and Raimondi, R., 2017, Theory of the spin galvanic effect at oxide interfaces, Phys. Rev. Lett., 119 (25), 256801.

[5] Benítez, L.A., Savero Torres, W., Sierra, J.F., Timmermans, M., Garcia, J.H., Roche, S., Costache, M.V., and Valenzuela, S.O., 2020, Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures, Nat. Mater., 19 (2), 170–175.

[6] Borge, J., and Tokatly, I.V., 2017, Ballistic spin transport in the presence of interfaces with strong spin-orbit coupling, Phys. Rev. B, 96 (11), 115445.

[7] Rao, Q., Kang, W.H., Xue, H., Ye, Z., Feng, X., Watanabe, K., Taniguchi, T., Wang, N., Liu, M.H., and Ki, D.K., 2023, Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2, Nat. Commun., 14 (1), 6124.

[8] Datta, S., and Das, B., 1990, Electronic analog of the electro‐optic modulator, Appl. Phys. Lett., 56 (7), 665–667.

[9] Putri, S.A., Suharyadi, E., and Absor, M.A.U., 2021, Polarity effect on the electronic structure of molybdenum dichalcogenides moxy (X, Y = S, Se): A computational study based on density-functional theory, Indones. J. Chem., 21 (3), 598–608.

[10] Lukmantoro, A., and Absor, M.A.U., 2023, Anisotropic Rashba splitting dominated by out-of-plane spin polarization in two-dimensional Janus XA2Y (A = Si, Sn, Ge; X, Y = Sb, Bi) with surface imperfection, Phys. Rev. Mater., 7 (10), 104005.

[11] Sino, P.A.L., Feng, L.Y., Villaos, R.A.B., Cruzado, H.N., Huang, Z.Q., Hsu, C.H., and Chuang, F.C., 2021, Anisotropic Rashba splitting in Pt-based janus monolayers PtXY (X,Y = S, Se, or Te), Nanoscale Adv., 3 (23), 6608–6616.

[12] Nakamura, T., Ohtsubo, Y., Yamashita, Y., Ideta, S., Tanaka, K., Yaji, K., Harasawa, A., Shin, S., Komori, F., Yukawa, R., Horiba, K., Kumigashira, H., and Kimura, S., 2018, Giant Rashba splitting of quasi-one-dimensional surface states on Bi/InAs(110)-(2 × 1), Phys. Rev. B, 98 (7), 075431.

[13] Feng, Y., Jiang, Q., Feng, B., Yang, M., Xu, T., Liu, W., Yang, X., Arita, M., Schwier, E.F., Shimada, K., Jeschke, H.O., Thomale, R., Shi, Y., Wu, X., Xiao, S., Qiao, S., and He, S., 2019, Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2, Nat. Commun., 10 (1), 4765.

[14] Niesner, D., Wilhelm, M., Levchuk, I., Osvet, A., Shrestha, S., Batentschuk, M., Brabec, C., and Fauster, T., 2016, Giant Rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite, Phys. Rev. Lett., 117 (12), 126401.

[15] Guillet, T., Marty, A., Vergnaud, C., Jamet, M., Zucchetti, C., Isella, G., Barbedienne, Q., Jaffrès, H., Reyren, N., George, J.M., and Fert, A., 2021, Large Rashba unidirectional magnetoresistance in the Fe/Ge(111) interface states, Phys. Rev. B, 103 (6), 064411.

[16] Chen, J., Wu, K., Hu, W., and Yang, J., 2021, Tunable Rashba spin splitting in two-dimensional polar perovskites, J. Phys. Chem. Lett., 12 (7), 1932–1939.

[17] Popović, Z.S., Kurdestany, J.M., and Satpathy, S., 2015, Electronic structure and anisotropic Rashba spin-orbit coupling in monolayer black phosphorus, Phys. Rev. B, 92 (3), 035135.

[18] Zhang, S.H., and Liu, B.G., 2019, Anisotropic Rashba effect and charge and spin currents in monolayer BiTeI by controlling symmetry, Phys. Rev. B, 100 (16), 165429.

[19] Affandi, Y., Darojat, Y., Anshory, M., and Masfufah, A., 2024, Computational exploration of intrinsic Rashba splitting in Janus Si2SbBi monolayer using density functional theory, J. Energy, Mater. Instrum. Technol., 5 (1), 28–34.

[20] Affandi, Y., and Ulil Absor, M.A., 2019, Electric field-induced anisotropic Rashba splitting in two dimensional tungsten dichalcogenides WX2 (X: S, Se, Te): A first-principles study, Phys. E, 114, 113611.

[21] Chen, J., Wu, K., Ma, H., Hu, W., and Yang, J., 2020, Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping, RSC Adv., 10 (11), 6388–6394.

[22] Anshory, M., Darojat, Y., and Affandi, Y., 2024, Electric field controlled anisotropic Rashba splitting in Janus chromium dichalcogenide monolayers: A computational study based on density functional theory, JTAF, 12 (1), 49–56.

[23] Lu, A.Y., Zhu, H., Xiao, J., Chuu, C.P., Han, Y., Chiu, M.H., Cheng, C.C., Yang, C.W., Wei, K.H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M.Y., Zhang, X., and Li, L.J., 2017, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol., 12 (8), 744–749.

[24] Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., and Lou, J., 2017, Janus monolayer transition-metal dichalcogenides, ACS Nano, 11 (8), 8192–8198.

[25] Trivedi, D.B., Turgut, G., Qin, Y., Sayyad, M.Y., Hajra, D., Howell, M., Liu, L., Yang, S., Patoary, N.H., Li, H., Petrić, M.M., Meyer, M., Kremser, M., Barbone, M., Soavi, G., Stier, A.V., Müller, K., Yang, S., Esqueda, I.S., Zhuang, H., Finley, J.J., and Tongay, S., 2020, Room-temperature synthesis of 2D Janus crystals and their heterostructures, Adv. Mater., 32 (50), 2006320.

[26] Xiang, L., Ke, Y., and Zhang, Q., 2019, Tunable giant Rashba-type spin splitting in PtSe2/MoSe2 heterostructure, Appl. Phys. Lett., 115 (20), 203501.

[27] Din, H.U., Idrees, M., Albar, A., Shafiq, M., Ahmad, I., Nguyen, C.V., and Amin, B., 2019, Rashba spin splitting and photocatalytic properties of GeC-MSSe (M = Mo, W) van der Waals heterostructures, Phys. Rev. B, 100 (16), 165425.

[28] Gabrys, P.A., Seo, S.E., Wang, M.X., Oh, E., Macfarlane, R.J., and Mirkin, C.A., 2018, Lattice mismatch in crystalline nanoparticle thin films, Nano Lett., 18 (1), 579–585.

[29] Lv, M.H., Li, C.M., and Sun, W.F., 2022, Spin-orbit coupling and spin-polarized electronic structures of Janus vanadium-dichalcogenide monolayers: First-principles calculations, Nanomaterials, 12 (3), 382.

[30] Dey, D., and Botana, A.S., 2020, Structural, electronic, and magnetic properties of vanadium-based Janus dichalcogenide monolayers: A first-principles study, Phys. Rev. Mater., 4 (7), 74002.

[31] Zhang, C., Nie, Y., Sanvito, S., and Du, A., 2019, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization, Nano Lett., 19 (2), 1366–1370.

[32] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[33] Ozaki, T., Kino, H., Yu, J., Han, M.J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T., Weng, H., and Terakura, K., 2009, OpenMX: Open source package for Material eXplorer, http://www.openmx-square.org/.

[34] Ozaki, T., 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B, 67 (15), 155108.

[35] Ozaki, T., and Kino, H., 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B, 69 (19), 195113.

[36] Theurich, G., and Hill, N.A., 2001, Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B, 64 (7), 073106.

[37] Absor, M.A.U., Santoso, I., Harsojo, H., Abraha, K., Kotaka, H., Ishii, F., and Saito, M., 2017, Polarity tuning of spin-orbit-induced spin splitting in two-dimensional transition metal dichalcogenides, J. Appl. Phys., 122 (15), 153905.

[38] Chae, W.H., Cain, J.D., Hanson, E.D., Murthy, A.A., and Dravid, V.P., 2017, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2, Appl. Phys. Lett., 111 (14), 143106.

[39] Kumar, S., Kaczmarczyk, A., and Gerardot, B.D., 2015, Strain-induced spatial and spectral isolation of quantum emitters in mono- and bi-layer WSe2, Nano Lett., 15 (11), 7567–7573.

[40] Vajna, S., Simon, E., Szilva, A., Palotas, K., Ujfalussy, B., and Szunyogh, L., 2012, Higher-order contributions to the Rashba-Bychkov effect with application to the Bi/Ag(111) surface alloy, Phys. Rev. B, 85 (7), 075404.

[41] Yang, C., Li, J., Liu, X., and Bai, C., 2023, The tunable anisotropic Rashba spin–orbit coupling effect in Pb-adsorbed Janus monolayer WSeTe, Phys. Chem. Chem. Phys., 25 (42), 28796–28806.

[42] Nitta, J., Akazaki, T., Takayanagi, H., and Enoki, T., 1997, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure, Phys. Rev. Lett., 78 (7), 1335–1338.

[43] Zhong, Z., Tóth, A., and Held, K., 2013, Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces, Phys. Rev. B, 87 (16), 161102.

[44] Jang, C.W., Lee, W.J., Kim, J.K., Park, S.M., Kim, S., and Choi, S.H., 2022, Growth of two-dimensional Janus MoSSe by a single in situ process without initial or follow-up treatments, NPG Asia Mater., 14 (1), 15.

[45] Qin, Y., Sayyad, M., Montblanch, A.R.P., Feuer, M.S.G., Dey, D., Blei, M., Sailus, R., Kara, D.M., Shen, Y., Yang, S., Botana, A.S., Atature, M., and Tongay, S., 2022, Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth, Adv. Mater., 34 (6), 2106222.

[46] Lin, Y.C., Liu, C., Yu, Y., Zarkadoula, E., Yoon, M., Puretzky, A.A., Liang, L., Kong, X., Gu, Y., Strasser, A., Meyer, H.M., Lorenz, M., Chisholm, M.F., Ivanov, I.N., Rouleau, C.M., Duscher, G., Xiao, K., and Geohegan, D.B., 2020, Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures, ACS Nano, 14 (4), 3896–3906.

[47] Volobuev, V.V., Mandal, P.S., Galicka, M., Caha, O., Sánchez-Barriga, J., Di Sante, D., Varykhalov, A., Khiar, A., Picozzi, S., Bauer, G., Kacman, P., Buczko, R., Rader, O., and Springholz, G., 2017, Giant Rashba splitting in Pb1–xSnxTe (111) topological crystalline insulator films controlled by bi doping in the bulk, Adv. Mater., 29 (3), 1604185.



DOI: https://doi.org/10.22146/ijc.93543

Article Metrics

Abstract views : 1539 | views : 662


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.