Synthesis and Characterization of a Novel Dapsone-Derived Bisazo Ligand and Its Gold(III) Complex, with Evaluation of Its Antioxidant and Anticancer Activities
Haider Muhammad Hessoon(1), Hussam Muhammad Abbas(2*)
(1) Department of Chemistry, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
(2) Department of Chemistry, College of Science, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
(*) Corresponding Author
Abstract
Keywords
References
[1] Gupta, P., Drexler, H.J., Wingad, R., Wass, D., Baráth, E., Beweries, T., and Hering-Junghans, C., 2023, P,N-type phosphaalkene-based Ir(I) complexes: Synthesis, coordination chemistry, and catalytic applications, Inorg. Chem. Front., 10 (8), 2285–2293.
[2] Shanmugaraju, S., 2022, Supramolecular Coordination Complexes: Design, Synthesis, and Applications, Elsevier, Amsterdam, Netherlands.
[3] Reddy, K.H., 1999, Coordination compounds in biology, Resonance, 4 (6), 67–77.
[4] Adeyemi, J.O., and Onwudiwe, D.C., 2020, The mechanisms of action involving dithiocarbamate complexes in biological systems, Inorg. Chim. Acta, 511, 119809.
[5] Mortadza, N.A., Ngaini, Z., and Arif, M.A.M., 2021, Synthesis of silver(I) coordination of aspirinate azo ligands as potential antibacterial agents, Defect Diffus. Forum, 411, 17–24.
[6] Sahoo, J., and Paidesetty, S.K., 2016, Medicinal interest of azo-based organic compounds: A review, Asian J. Pharm. Clin. Res., 9 (7), 33–39.
[7] Shikhaliyev, N.Q., Kuznetsov, M.L., Maharramov, A.M., Gurbanov, A.V, Ahmadova, N.E., Nenajdenko, V.G., Mahmudov, K.T., and Pombeiro, A.J.L., 2019, Noncovalent interactions in the design of bis-azo dyes, CrystEngComm, 21 (34), 5032–5038.
[8] Léonard, E., and Fayeulle, A., 2021, Azo-dyes-grafted oligosaccharides—From synthesis to applications, Molecules, 26 (11), 3063.
[9] Bafana, A., Devi, S.S., and Chakrabarti, T., 2011, Azo dyes: Past, present and the future, Environ. Rev., 19, 350–371.
[10] Zollinger, H., 2003, Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments, Wiley-VCH, Weinheim, Germany.
[11] Ali, Y., Abd Hamid, S., and Rashid, U., 2018, Biomedical applications of aromatic azo compounds, Mini-Rev. Med. Chem., 18 (18), 1548–1558.
[12] Karjigi, S., Murthy, S.C., Kallappa, H., Kusuma, M.R., Aruna, B., and Reddy, Y.N., 2016, Dapsone: An update, Indian J. Lepr, 87 (4), 233–239.
[13] Wozel, G., and Blasum, C., 2014, Dapsone in dermatology and beyond, Arch. Dermatol. Res., 306 (2), 103–124.
[14] Oliveira, F.R., Pessoa, M.C., Albuquerque, R.F.V., Schalcher, T.R., and Monteiro, M.C., 2014, Clinical applications and methemoglobinemia induced by dapsone, J. Braz. Chem. Soc., 25 (10), 1770–1779.
[15] Ghaoui, N., Hanna, E., Abbas, O., Kibbi, A.G., and Kurban, M., 2020, Update on the use of dapsone in dermatology, Int. J. Dermatol., 59 (7), 787–795.
[16] Hughes, W.T., 1998, Use of dapsone in the prevention and treatment of Pneumocystis carinii pneumonia: A review, Clin. Infect. Dis., 27 (1), 191–204.
[17] Kyhoiesh, H.A.K., and Al-Adilee, K.J., 2023, Pt(IV) and Au(III) complexes with tridentate-benzothiazole based ligand: Synthesis, characterization, biological applications (antibacterial, antifungal, antioxidant, anticancer and molecular docking) and DFT calculation, Inorg. Chim. Acta, 555, 121598.
[18] Kumar Bhaumik, P., Ghosh, K., and Chattopadhyay, S., 2021, Synthetic strategies, crystal structures and biological activities of metal complexes with the members of azole family: A review, Polyhedron, 200, 115093.
[19] Manju, M., Joshi, P., and Kumar, D., 2014, Metal complexes of biological active 2-aminothiazole derived ligands, Russ. J. Coord. Chem., 40 (7), 445–459.
[20] Gassim, F.A.Z.G., and Makkawi, A.J.J., 2023, Anticancer activity of synthesized ZnO and ZnO/AgCl nanocomposites against five human cancer cells, Indones. J. Chem., 23 (2), 333–340.
[21] Irfandi, R., Raya, I., Ahmad, A., Fudholi, A., Natsir, H., Kartina, D., Karim, H., Santi, S., and Salnus, S., 2022, Review on anticancer activity of essential metal dithiocarbamate complexes, Indones. J. Chem., 22 (6), 1722–1736.
[22] Yasir, A.F., and Jamel, H.O., 2023, Synthesis of a new DPTYEAP ligand and its complexes with their assessments on physical properties, antioxidant, and biological potential to treat breast cancer, Indones. J. Chem., 23 (3), 796–808.
[23] Gęgotek, A., and Skrzydlewska, E., 2023, Ascorbic acid as antioxidant, Vitam. Horm., 121, 247–270.
[24] Rahman, M.M., Islam, M.B., Biswas, M., and Khurshid Alam, A.H.M., 2015, In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh, BMC Res. Notes, 8 (1), 621.
[25] Celiz, G., Renfige, M., and Finetti, M., 2020, Spectral analysis allows using the DPPH* UV–Vis assay to estimate antioxidant activity of colored compounds, Chem. Pap., 74 (9), 3101–3109.
[26] Rubab, M., Chelliah, R., and Oh, D.H., 2022, Screening for Antioxidant Activity: Diphenylpicrylhydrazine (DPPH) Assay, in Methods in Actinobacteriology, Eds. Dharumadurai, D., Springer US, New York, US, 453–454.
[27] Senthilraja, P., and Kathiresan, K., 2015, In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF-7 cell lines study of marine yeast, J. Appl. Pharm. Sci., 5 (3), 80–84.
[28] Ibrahim, A.A., Kareem, M.M., Al-Noor, T.H., Al-Muhimeed, T., AlObaid, A.A., Albukhaty, S., Sulaiman, G.M., Jabir, M., Taqi, Z.J., and Sahib, U.I., 2021, Pt(II)-thiocarbohydrazone complex as cytotoxic agent and apoptosis inducer in Caov-3 and HT-29 cells through the P53 and Caspase-8 pathways, Pharmaceuticals, 14 (6), 509.
[29] Ali, I.H., Jabir, M.S., Al-Shmgani, H.S.A., Sulaiman, G.M., and Sadoon, A.H., 2018, Pathological and immunological study on infection with Escherichia coli in ale BALB/c mice, J. Phys.: Conf. Ser., 1003 (1), 012009.
[30] Jabir, M.S., Rashid, T.M., Nayef, U.M., Albukhaty, S., AlMalki, F.A., Albaqami, J., AlYamani, A.A., Taqi, Z.J., and Sulaiman, G.M., 2022, Inhibition of Staphylococcus aureus α-hemolysin production using nanocurcumin capped Au@ZnO nanocomposite, Bioinorg. Chem. Appl., 2022, 2663812.
[31] Pérez-Arantegui, J., and Laborda, F., 2019, Inorganic mass spectrometry, Phys. Sci. Rev., 4 (3), 20180003.
[32] Ferranti, P., and Picariello, G., 2016, “Mass Spectrometry: Applications” in Encyclopedia of Food and Health, Eds., Caballero, B., Finglas, P.M., and Toldrá, F., Academic Press, Oxford, UK, 654–660.
[33] Muddiman, D.C., 2018, Jürgen H. Gross: Mass spectrometry: A textbook, 3rd ed., Anal. Bioanal. Chem., 410 (8), 2051–2052.
[34] Drew, M.G.B., Murphy, B.P., Nelson, J., and Nelson, S.M., 1987, Dicopper(II) complexes of a 28-membered N8 macrocycle. Evidence for proton transfer from co-ordinated secondary amine to thiocyanate, leading to formation of an Isothiocyanic acid complex, J. Chem. Soc., Dalton Trans., (4), 873–879.
[35] Bahjat, H.H., Ismail, R.A., Sulaiman, G.M., and Jabir, M.S., 2021, Magnetic field-assisted laser ablation of titanium dioxide nanoparticles in water for anti-bacterial applications, J. Inorg. Organomet. Polym. Mater., 31 (9), 3649–3656.
[36] Jihad, M.A., Noori, F.T.M., Jabir, M.S., Albukhaty, S., AlMalki, F.A., and Alyamani, A.A., 2021, Polyethylene glycol functionalized graphene oxide nanoparticles loaded with Nigella sativa extract: A smart antibacterial therapeutic drug delivery system, Molecules, 26 (11), 3067.
[37] Tran, N.H., Kucharský, Š., Waring, T.M., Atmaca, S., and Beheim, B.A., 2021, Limited scope for group coordination in stylistic variations of kolam art, Front Psychol., 12, 742577.
[38] Lecoutre, M., Rohart, F., Huet, T.R., and Maki, A.G., 2000, Photoacoustic detection of new bands of HCN between 11 390 and 13 020 cm−1, J. Mol. Spectrosc., 203 (1), 158–164.
[39] Jabir, M.S., Nayef, U.M., Abdulkadhim, W.K., Taqi, Z.J., Sulaiman, G.M., Sahib, U.I., Al-Shammari, A.M., Wu, Y.J., El-Shazly, M., and Su, C.C., 2021, Fe3O4 Nanoparticles capped with PEG induce apoptosis in breast cancer AMJ13 cells via mitochondrial damage and reduction of NF-κB translocation, J. Inorg. Organomet. Polym. Mater., 31 (3), 1241–1259.
[40] Khashan, K.S., Abdulameer, F.A., Jabir, M.S., Hadi, A.A., and Sulaiman, G.M., 2020, Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water, Adv. Nat. Sci: Nanosci. Nanotechnol., 11 (3), 035010.
[41] Mikheev, Y.A., and Ershov, Y.A., 2018, Assignment of the π → π* and n → π* transitions to the spectral bands of azobenzene and dimethylaminoazobenzene, Russ. J. Phys. Chem. A, 92 (8), 1499–1507.
[42] Grebenkin, S.Y., Syutkin, V.M., and Baranov, D.S., 2017, Mutual orientation of the n → π* and π → π* transition dipole moments in azo compounds: Determination by light-induced optical anisotropy, J. Photochem. Photobiol., A, 344 (1), 1–7.
[43] Mohammed, M.K.A., Mohammad, M.R., Jabir, M.S., and Ahmed, D.S., 2020, Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conf. Ser.: Mater. Sci. Eng., 757 (1), 012028.
[44] Khashan, K.S., Jabir, M.S., and Abdulameer, F.A., 2018, Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid, J. Phys.: Conf. Ser., 1003 (1), 012100.
[45] Muniz, F.T.L., Miranda, M.A.R., Morilla dos Santos, C., and Sasaki, J.M., 2016, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr., Sect. A: Found. Crystallogr., 72 (3), 385–390.
[46] Akbari, B., Tavandashti, M.P., and Zandrahimi, M., 2011, Particle size characterization of nanoparticles – A practical approach, Iran. J. Mater. Sci. Eng., 8 (2), 48–56.
[47] Jaillet, L., Artemova, S., and Redon, S., 2017, IM-UFF: Extending the universal force field for interactive molecular modeling, J. Mol. Graphics Modell., 77, 350–362.
[48] Fnfoon, D.Y., and Al-Adilee, K.J., 2023, Synthesis and spectral characterization of some metal complexes with new heterocyclic azo imidazole dye ligand and study biological activity as anticancer, J. Mol. Struct., 1271, 134089.
[49] Jasim, F.N., and Mohsein, H.F., 2022, Synthesis, identification and anticancer evaluation of new heterocyclic compounds derived from 2-benzimidazolylacetonitrile, HIV Nurs., 22 (2), 1410–1415.
[50] Hashim, M., and Fry, J., 2020, Evaluation of direct and indirect antioxidant properties of selected four natural chemical compounds: quercetin, epigallocatechin-3-gallate, indole-3-carbinol and sulforaphane by DPPH radical scavenging assay, J. Biomed. Res. Environ. Sci., 1 (8), 389–392.
[51] Skroza, D., Šimat, V., Vrdoljak, L., Jolić, N., Skelin, A., Čagalj, M., Frleta, R., and Generalić Mekinić, I., 2022, Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods, Antioxidants, 11 (9), 1784.
[52] Sönmez, F., Gür, T., and Şahin, Z., 2023, Thiophenyl-chalcone derivatives: Synthesis, antioxidant activity, FMO energies and molecular parameters, Balıkesir Üniv. Fen Bilim. Enst. Derg., 25 (1), 293–304.
DOI: https://doi.org/10.22146/ijc.89115
Article Metrics
Abstract views : 2232 | views : 923 | views : 668Copyright (c) 2024 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.