Synthesis of Printed Hollow Fiber Membranes Urea as a Membrane Candidate Hemodialysis

https://doi.org/10.22146/ijc.83068

Muhammad Cholid Djunaidi(1*), Denandha Putri Ayuningrum(2), Nesti Dwi Maharani(3), Khabibi Khabibi(4), Pardoyo Pardoyo(5), Yanuardi Raharjo(6), Heru Susanto(7), Abdullah Malik Islam Filardli(8)

(1) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(2) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(3) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(4) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(5) Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(6) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
(7) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(8) Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedharto SH, Tembalang, Semarang 50275, Indonesia
(*) Corresponding Author

Abstract


Chronic kidney failure is a disease that affects the world's population and an alternative solution is hemodialysis. Hemodialysis is the process of cleaning the blood from urea and creatinine through a semi-permeable membrane in the form of a hollow fiber membrane (HFM) with the following advantages: flexible and low energy requirements. The weaknesses of commercial hemodialysis membranes are that they are hydrophobic, chemical resistant, and low biocompatibility. This research uses a membrane of polysulfone combined with eugenol and polyethylene glycol (PEG) or polyethylene glycol diglycidyl ether (PEGDE). Eugenol has allyl, hydroxy, and methoxy groups which are derived from polyeugenol via allyl groups and from polyeugenol to polyeugenoxy acetic acid via hydroxyl groups. The resulting molecularly imprinted membrane (MIM) in the form of hollow fiber has better porosity, absorption, flux values and is highly selective in transport, with the order of selectivity, namely urea > creatinine > vitamin B12.


Keywords


hollow fiber; polyeugenoxy acetate; hemodialysis; imprinted



References

[1] Kovesdy, C.P., 2022, Epidemiology of chronic kidney disease: An update 2022, Kidney Int. Suppl., 12 (1), 7–11.

[2] Verma, S.K., Modi, A., Singh, A.K., Teotia, R., and Bellare, J., 2018, Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance, J. Biomed. Mater. Res., Part B, 106 (3), 1286–1298.

[3] Indonesian Rephrology Association, 2020, 13th Annual Report of Indonesian Renal Registry – 2020, https://www.indonesianrenalregistry.org/data/IRR%202020.pdf

[4] Beaudet, M., Ravensbergen, L., DeWeese, J., Beaubien-Souligny, W., Nadeau-Fredette, A.C., Rios, N., Caron, M.L., Suri, R.S., and El-Geneidy, A., 2022, Accessing hemodialysis clinics during the COVID-19 pandemic, Transp. Res. Interdiscip. Perspect., 13, 100533.

[5] Lau, H.S., Lau, S.K., Soh, L.S., Hong, S.U., Gok, X.Y., Yi, S., and Yong, W.F., 2022, State-of-the-art organic-and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond, Membranes, 12 (5), 539.

[6] Said, N., Lau, W.J., Ho, Y.C., Lim, S.K., Zainol Abidin, M.N., and Ismail, A.F., 2021, A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application, Membranes, 11 (10), 767.

[7] Serbanescu, O.S., Voicu, S.I., and Thakur, V.K., 2020, Polysulfone functionalized membranes: Properties and challenges, Mater Today Chem, 17, 100302.

[8] Djunaidi, M.C., Febriola, N.A., and Haris, A., 2021, Molecularly imprinted membrane for transport of urea, creatinine, and vitamin B12 as a hemodialysis candidate membrane, Open Chem., 19 (1), 806–817.

[9] Djunaidi, M.C., and Wenten, I.G., 2019, Synthesis of eugenol-based selective membrane for hemodialysis, IOP Conf. Ser.: Mater. Sci. Eng., 509 (1), 012069.

[10] Djunaidi, M.C., Wahyuni, T., Lusiana, R.A., Widodo, D.S., and Pardoyo, P., 2020, The effect of leaching agent on molecularly imprinted membrane urea transport process based on polyeugenoxy acetic acid, 2020, IOP Conf. Ser.: Mater. Sci. Eng., 959 (1), 012023.

[11] Djunaidi, M.C., Dwi Maharani, N., Gunawan, G., and Khasanah, M., 2023, Eugenol-based molecular imprinted membrane synthesis as a glucose sensor in honey, Mater. Today: Proc., 80 (2), 1195–1204.

[12] Seyfollahi, M., Etemadi, H., Yegani, R., Rabeii, M., and Shokri, E., 2019, The effect of polyethylene glycol grafted nanodiamond on antifouling properties of cellulose acetate membrane for removal of BSA from contaminated water, J. Water Environ. Nanotechnol., 4 (1), 1–16.

[13] Chisca, S., Marchesi, T., Falca, G., Musteata, V.E., Huang, T., Abou-Hamad, E., and Nunes, S.P., 2020, Organic solvent and thermal resistant polytriazole membranes with enhanced mechanical properties cast from solutions in non-toxic solvents, J. Membr. Sci., 597, 117634.

[14] Ponomar, M., Krasnyuk, E., Butylskii, D., Nikonenko, V., Wang, Y., Jiang, C., Xu, T., and Pismenskaya, N., 2022, Sessile drop method: critical analysis and optimization for measuring the contact angle of an ion-exchange membrane surface, Membranes, 12 (8), 765.

[15] Xu, F., Wei, M., Zhang, X., Song, Y., Zhou, W., and Wang, Y., 2019, How pore hydrophilicity influences water permeability?, Research, 2019, 2581241.

[16] He, M., Zhang, S., Su, Y., Zhang, R., Liu, Y., and Jiang, Z., 2018, Manipulating membrane surface porosity and pore size by in-situ assembly of Pluronic F127 and tannin, J. Membr. Sci., 556, 285–292.

[17] Umam, K., Sagita, F., Pramono, E., Ledyastuti, M., Kadja, G.T.M., and Radiman, C.L., 2023, Polyvinylidenefluoride (PVDF)/surface functionalized-mordenite mixed matrix membrane for Congo red dyes removal: Effect of types of organosilane, JCIS Open, 11, 100093.

[18] Kotsilkova, R., Borovanska, I., Todorov, P., Ivanov, E., Menseidov, D., Chakraborty, S., and Bhattacharjee, C., 2018, Tensile and surface mechanical properties of polyethersulphone (PES) and polyvinylidene fluoride (PVDF) membranes, J. Theor. Appl. Mech., 48 (3), 85–99.

[19] Acarer, S., Pir, I., Tüfekci, M., Türkoğlu Demirkol, G., and Tüfekci, N., 2021, Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes, Polymers, 13 (10), 1661.

[20] Zou, L., Zhang, X., Gusnawan, P., Zhang, G., and Yu, J., 2021, Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: From the seawater to oilfield produced water, J. Membr. Sci., 619, 118802.

[21] Ni, T., Kong, L., Xie, Z., Lin, J., and Zhao, S., 2022, Flux vs. permeability: How to effectively evaluate mass transfer performance of membranes in oil-water separation, J. Water Process Eng., 49, 103119.

[22] Kayani, A., Raza, M.A., Raza, A., Hussain, T., Akram, M.S., Sabir, A., Islam, A., Haider, B., Khan, R.U., and Park, S.H., 2021, Effect of varying amount of polyethylene glycol (PEG-600) and 3-aminopropyltriethoxysilane on the properties of chitosan based reverse osmosis membranes, Int. J. Mol. Sci., 22 (5), 2290.

[23] Qi, M., Han, Y., Zhao, Z., and Li, Y., 2021, Integrated determination of chemical oxygen demand and biochemical oxygen demand, Pol. J. Environ. Stud., 30 (2), 1785–1794.

[24] Rekrak, A.Z., Chiboub Fellah, A., and Boulefred, S., 2020, Dependability and purification performance of a semi-arid zone: A case study of Algeria’s wastewater treatment plant, Egypt. J. Aquat. Res., 46 (1), 41–47.

[25] Yang, Y., Qiao, S., Zheng, M., Zhou, J., and Quan, X., 2019, Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance, J. Membr. Sci., 582, 335–341.



DOI: https://doi.org/10.22146/ijc.83068

Article Metrics

Abstract views : 219 | views : 102 | views : 59


Copyright (c) 2024 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.