The Green Approach of Cerium Oxide Nanoparticle and Its Application for Photo-degradation of Phenol Dye

https://doi.org/10.22146/ijc.81657

Gusliani Eka Putri(1*), Syukri Arief(2), Ahmad Hafizullah Ritonga(3), Wiya Elsa Fitri(4), Eliza Arman(5), Arniat Christian Telaumbanu(6), Rahmi Novita Yusuf(7)

(1) Department of Medical Laboratory Technology, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika, Jl. Prof. Dr. Hamka No. 228, Padang 25132, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Limau Manis Campus, Padang 25163, Indonesia
(3) Institut Kesehatan Medistra Lubuk Pakam, Jl. Sudirman No. 38, Deli Serdang 20512, Indonesia
(4) Department of Public Health, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika, Jl. Prof. Dr. Hamka No. 228, Padang 25132, Indonesia
(5) Department of Medical Laboratory Technology, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika, Jl. Prof. Dr. Hamka No. 228, Padang 25132, Indonesia
(6) Department of Medical Laboratory Technology, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika, Jl. Prof. Dr. Hamka No. 228, Padang 25132, Indonesia
(7) Department of Medical Laboratory Technology, Sekolah Tinggi Ilmu Kesehatan Syedza Saintika, Jl. Prof. Dr. Hamka No. 228, Padang 25132, Indonesia
(*) Corresponding Author

Abstract


The approach to the synthesis of cerium oxide nanoparticles (CeO2NPs) using plants as capping agents has been widely researched because of its eco-friendly, low-cost, simple, effective, and reusability. In this research, we used Moringa oleifera leaf extract-mediated CeO2NPs. CeO2NPs were characterized by XRD, FTIR, SEM, TEM, and DRS UV-vis. The photocatalytic activity of CeO2NPs was tested using a phenol dye concentration of 7 mg/L with variations in photocatalyst weight of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mg under UV irradiation, respectively, with time variations of 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 min. SEM and TEM morphology results showed that the CeO2NPs were spherical and agglomerated. The crystal structure is cubic, with a crystal size of 18 nm with a band gap of 2.87 eV. CeO2NPs showed high photo-degradation phenol dye of 94.45% under visible light in 120 min irradiation time. The results show that M. oleifera leaf extract could be as inexpensive and safe for synthesizing other metal oxide nanoparticles, potentially having applications in the biomedical and environmental fields.

Keywords


cerium oxide nanoparticles; approach synthesis; phenol; Moringa oleifera; photocatalytic

Full Text:

Full Text PDF


References

[1] Adusei, J.K., Agorku, E.S., Voegborlo, R.B., Ampong, F.K., Danu, B.Y., and Amarh, F.A., 2022, Removal of Methyl red in aqueous systems using synthesized NaAlg-g-CHIT/nZVI adsorbent, Sci. Afr., 17, e01273.

[2] Shu, Z., Zhang, Y., Ouyang, J., and Yang, H., 2017, Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite, Appl. Surf. Sci., 420, 833–838.

[3] Mohamed, A., Abuarab, M.E., Mehawed, H.S., and Kasem, M.A., 2021, Water footprint as a tool of water resources management - Review, Egypt. J. Chem., 64 (12), 7231–7237.

[4] Prince, J., Tzompantzi, F., Mendoza-Damián, G., Hernández-Beltrán, F., and Valente, J.S., 2015, Photocatalytic degradation of phenol by semiconducting mixed oxides derived from Zn(Ga)Al layered double hydroxides, Appl. Catal., B, 163, 352–360.

[5] Ahmad, T., Iqbal, J., Bustam, M.A., Zulfiqar, M., Muhammad, N., Al Hajeri, B.M., Irfan, M., Anwaar Asghar, H.M., and Ullah, S., 2020, Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light, J. Mol. Struct., 1217, 128292.

[6] Shukla, S.S., Dorris, K.L., and Chikkaveeraiah, B.V., 2009, Photocatalytic degradation of 2,4-dinitrophenol, J. Hazard. Mater., 164 (1), 310–314.

[7] Ibrahim, M.A., Helmy, E.M., Nazawi, A.M.A., Sadek, M.W., and Abdelatif, M.S., 2021, Biodegradation of nonylphenol ethoxylate in wastewater by Penicillium chrysogenum, Egypt. J. Chem., 64 (12), 7251–7262.

[8] de Elguea-Culebras, G.O., Bravo, E.M., and Sánchez-Vioque, R., 2022, Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market – A review, Ind. Crops Prod., 175, 114261.

[9] Afshar Mogaddam, M.R., Farajzadeh, M.A., Tuzen, M., Jouyban, A., and Khandaghi, J., 2021, Organic solvent-free elevated temperature liquid–liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid–liquid microextraction of three phenolic antioxidants from oil samples, Microchem. J., 168, 106433.

[10] Gamonchuang, J., and Burakham, R., 2021, Amino-based magneto-polymeric-modified mixed iron hydroxides for magnetic solid phase extraction of phenol residues in environmental samples, J. Chromatogr. A, 1643, 462071.

[11] Gong, Y., Ding, P., Xu, M.J., Zhang, C.M., Xing, K., and Qin, S., 2021, Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions, J. Environ. Manage., 289, 112525.

[12] Parisi, F., Lazzara, G., Merli, M., Milioto, S., Princivalle, F., and Sciascia, L., 2019, Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay mineral, Nanomaterials, 9 (12), 1699.

[13] Ciobanu, C.S., Popa, C.L., and Predoi, D., 2016, Cerium-doped hydroxyapatite nanoparticles synthesized by the co-precipitation method, J. Serb. Chem. Soc., 81 (4), 433–446.

[14] Sánchez-Rodríguez, D., Méndez Medrano, M.G., Remita, H., and Escobar-Barrios, V., 2018, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation, J. Environ. Chem. Eng., 6 (2), 1601–1612.

[15] Handani, S., Emriadi, Dahlan, D., and Arief, S., 2020, Enhanced structural, optical and morphological properties of ZnO thin film using green chemical approach, Vacuum, 179, 109513.

[16] Feng, C., Chen, Z., Jing, J., and Hou, J., 2020, The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods, J. Mater. Chem. C, 8 (9), 3000–3009.

[17] Putri, G.E., Rilda, Y., Syukri, S., Labanni, A., and Arief, S., 2021, Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method, J. Mater. Res. Technol., 15, 2355–2364.

[18] Putri, G.E., Rilda, Y., Syukri, S., Labanni, A., and Arief, S., 2022, Enhancing morphological and optical properties of montmorillonite/chitosan-modified cerium oxide nanoparticles for antimicrobial applications, Surf. Interfaces, 32, 102166.

[19] Putri, G.E., Arief, S., Jamarun, N., Gusti, F.R., and Fisli, A., 2019, High performance of photocatalytic activity of cerium doped silika mesoporous operating under visible light irradiation, KnE Eng., 4 (2), 128–140.

[20] Kumar, S., Tripathy, S., Singh, O.K., and Singh, S.G., 2021, Cerium oxide nanofiber based electroanalytical sensor for TNF-α detection: Improved interfacial stability with Nafion, Bioelectrochemistry, 138, 107725.

[21] Onoda, H., and Tanaka, R., 2019, Synthesis of cerium phosphate white pigments from cerium carbonate for cosmetics, J. Mater. Res. Technol., 8 (6), 5524–5528.

[22] Caputo, F., Mameli, M., Sienkiewicz, A., Licoccia, S., Stellacci, F., Ghibelli, L., and Traversa, E., 2017, A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity, Sci. Rep., 7 (1), 4636.

[23] Bui, H.T., Weon, S., Bae, J.W., Kim, E.J., Kim, B., Ahn, Y.Y., Kim, K., Lee, H., and Kim, W., 2021, Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants, J. Hazard. Mater., 404, 123976.

[24] Radić, N., Grbić, B., Petrović, S., Stojadinović, S., Tadić, N., and Stefanov, P., 2020, Effect of cerium oxide doping on the photocatalytic properties of rutile TiO2 films prepared by spray pyrolysis, Phys. B, 599, 412544.

[25] Putri, G.E., Gusti, F.R., Sary, A.N., Arief, S., Jamarun, N., and Amar B, S., 2019, Synthesis and antimicrobial activity of cerium oxide/AG dopes silica mesoporous modification as nanofillers for food packaging applications, Malays. Appl. Biol., 48 (4), 25–32.

[26] Feng, N., Liu, Y., Dai, X., Wang, Y., Guo, Q., and Li, Q., 2022, Advanced applications of cerium oxide based nanozymes in cancer, RSC Adv., 12 (3), 1486–1493.

[27] Arumugam, A., Karthikeyan, C., Haja Hameed, A.S., Gopinath, K., Gowri, S., and Karthika, V., 2015, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties, Mater. Sci. Eng., C, 49, 408–415.

[28] Singh, K.R.B., Nayak, V., Sarkar, T., and Singh, R.P., 2020, Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application, RSC Adv., 10 (45), 27194–27214.

[29] Arunachalam, T., Karpagasundaram, U., and Rajarathinam, N., 2017, Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties, Mater. Sci.-Pol., 35 (4), 791–798.

[30] Muthuvel, A., Jothibas, M., Mohana, V., and Manoharan, C., 2020, Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity, Inorg. Chem. Commun., 119, 108086.

[31] Fan, Y., Li, P., Hu, B., Liu, T., Huang, Z., Shan, C., Cao, J., Cheng, B., Liu, W., and Tang, Y., 2019, A smart photosensitizer-cerium oxide nanoprobe for highly selective and efficient photodynamic therapy, Inorg. Chem., 58 (11), 7295–7302.

[32] Zamri, M.S.F.A., and Sapawe, N., 2019, Kinetic study on photocatalytic degradation of phenol using green electrosynthesized TiO2 nanoparticles, Mater. Today: Proc., 19, 1261–1266.

[33] Pathak, T.K., Coetsee-Hugo, E., Swart, H.C., Swart, C.W., and Kroon, R.E., 2020, Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications, Mater. Sci. Eng., B, 261, 114780.

[34] Scott, T., Zhao, H., Deng, W., Feng, X., and Li, Y., 2019, Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite, Chemosphere, 216, 1–8.

[35] Fujishima, A., Zhang, X., and Tryk, D.A., 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (12), 515–582.

[36] Liu, J., Wang, H., Chang, M.J., Sun, M., Zhang, C.M., Yang, L.Q., Du, H.L., and Luo, Z.M., 2022, Facile synthesis of BiOCl with extremely superior visible light photocatalytic activity synergistically enhanced by Co doping and oxygen vacancies, Sep. Purif. Technol., 301, 121953.

[37] Thulasinathan, B., Jayabalan, T., Arumugam, N., Rasu Kulanthaisamy, M., Kim, W., Kumar, P., Govarthanan, M., and Alagarsamy, A., 2022, Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview, Fuel, 317, 123369.

[38] AlSalhi, M.S., Devanesan, S., Asemi, N., and Ahamed, A., 2023, Concurrent fabrication of ZnO–ZnFe2O4 hybrid nanocomposite for enhancing photocatalytic degradation of organic pollutants and its bacterial inactivation, Chemosphere, 318, 137928.

[39] Karimi-Maleh, H., Kumar, B.G., Rajendran, S., Qin, J., Vadivel, S., Durgalakshmi, D., Gracia, F., Soto-Moscoso, M., Orooji, Y., and Karimi, F., 2020, Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq., 314, 113588.

[40] Guan, X., Zhang, R., Jia, B., Liu, G., Yan, B., Lu, P., and Peng, G.D., 2022, Influence of ring structures on luminescence properties of trivalent cerium in Ge-doped silica optical fiber, J. Non-Cryst. Solids, 576, 121251.

[41] Orooji, Y., Tanhaei, B., Ayati, A., Tabrizi, S.H., Alizadeh, M., Bamoharram, F.F., Karimi, F., Salmanpour, S., Rouhi, J., Afshar, S., Sillanpää, M., Darabi, R., and Karimi-Maleh, H., 2021, Heterogeneous UV-switchable Au nanoparticles decorated tungstophosphoric acid/TiO2 for efficient photocatalytic degradation process, Chemosphere, 281, 130795.



DOI: https://doi.org/10.22146/ijc.81657

Article Metrics

Abstract views : 1448 | views : 797


Copyright (c) 2023 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.